We prove the existence and stability of Cantor families of quasi-periodic, small-amplitude solutions of quasi-linear autonomous Hamiltonian perturbations of KdV.

%B C. R. Math. Acad. Sci. Paris %I Elsevier %V 352 %P 603-607 %G en %U http://urania.sissa.it/xmlui/handle/1963/35067 %N 7-8 %1 35302 %2 Mathematics %4 1 %$ Approved for entry into archive by Maria Pia Calandra (calapia@sissa.it) on 2015-11-30T15:30:40Z (GMT) No. of bitstreams: 0 %R 10.1016/j.crma.2014.04.012 %0 Journal Article %J Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 24 (2013), no. 3: 437–450 %D 2013 %T A note on KAM theory for quasi-linear and fully nonlinear forced KdV %A P Baldi %A Massimiliano Berti %A Riccardo Montalto %K KAM for PDEs %X We present the recent results in [3] concerning quasi-periodic solutions for quasi-linear and fully nonlinear forced perturbations of KdV equations. For Hamiltonian or reversible nonlinearities the solutions are linearly stable. The proofs are based on a combination of di erent ideas and techniques: (i) a Nash-Moser iterative scheme in Sobolev scales. (ii) A regularization procedure, which conjugates the linearized operator to a di erential operator with constant coe cients plus a bounded remainder. These transformations are obtained by changes of variables induced by di eomorphisms of the torus and pseudo-di erential operators. (iii) A reducibility KAM scheme, which completes the reduction to constant coe cients of the linearized operator, providing a sharp asymptotic expansion of the perturbed eigenvalues. %B Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 24 (2013), no. 3: 437–450 %I European Mathematical Society %G en %1 7268 %2 Mathematics %4 1 %# MAT/05 ANALISI MATEMATICA %$ Submitted by Maria Pia Calandra (calapia@sissa.it) on 2013-12-09T08:16:04Z No. of bitstreams: 1 Baldi-Berti-Montalto-Lincei-Note-KAM-forced-KdV.pdf: 322654 bytes, checksum: ddae153eff7ad17e2be36cb3ba1af9bf (MD5) %R 10.4171/RLM/660 %0 Journal Article %J SIAM J. Math. Anal. 40 (2008) 382-412 %D 2008 %T Forced Vibrations of a Nonhomogeneous String %A P Baldi %A Massimiliano Berti %X We prove existence of vibrations of a nonhomogeneous string under a nonlinear time periodic forcing term in the case in which the forcing frequency avoids resonances with the vibration modes of the string (nonresonant case). The proof relies on a Lyapunov-Schmidt reduction and a Nash-Moser iteration scheme. %B SIAM J. Math. Anal. 40 (2008) 382-412 %G en_US %U http://hdl.handle.net/1963/2643 %1 1480 %2 Mathematics %3 Functional Analysis and Applications %$ Submitted by Andrea Wehrenfennig (andreaw@sissa.it) on 2008-05-07T08:29:52Z\\nNo. of bitstreams: 1\\nBaldiBerti06-1.pdf: 277037 bytes, checksum: 6abb75a412da123c87879c25714e41b2 (MD5) %R 10.1137/060665038 %0 Journal Article %J Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica e Applicazioni %D 2006 %T Periodic solutions of nonlinear wave equations for asymptotically full measure sets of frequencies %A P Baldi %A Massimiliano Berti %X We prove existence and multiplicity of small amplitude periodic solutions of completely resonant nonlinear wave equations with Dirichlet boundary conditions for asymptotically full measure sets of frequencies, extending the results of [7] to new types of nonlinearities. %B Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica e Applicazioni %V 17 %P 257-277 %G eng