We study the tangential case in 2-dimensional almost-Riemannian geometry. We\\r\\nanalyse the connection with the Martinet case in sub-Riemannian geometry. We\\r\\ncompute estimations of the exponential map which allow us to describe the\\r\\nconjugate locus and the cut locus at a tangency point. We prove that this last\\r\\none generically accumulates at the tangency point as an asymmetric cusp whose branches are separated by the singular set.

%B Journal of Dynamical and Control Systems %I Springer %V 17 %P 141-161 %G en %U http://hdl.handle.net/1963/4914 %1 4692 %2 Mathematics %3 Functional Analysis and Applications %4 -1 %$ Submitted by Andrea Wehrenfennig (andreaw@sissa.it) on 2011-10-25T09:38:15Z\\nNo. of bitstreams: 1\\n1009.2612v1.pdf: 263401 bytes, checksum: 0ddf4bcfd9663ee3c0da870233d119bb (MD5) %R 10.1007/s10883-011-9113-4