*Peristalsis*, i.e., a motion pattern arising from the propagation of muscle contraction and expansion waves along the body, is a common locomotion strategy for limbless animals. Mimicking peristalsis in bio-inspired robots has attracted considerable attention in the literature. It has recently been observed that maximal velocity in a metameric earthworm-like robot is achieved by actuating the segments using a “phase coordination” principle. This paper shows that, in fact, peristalsis (which requires not only phase coordination, but also that all segments oscillate at same frequency and amplitude) emerges from optimization principles. More precisely, basing our analysis on the assumption of small deformations, we show that peristaltic waves provide the optimal actuation solution in the ideal case of a periodic infinite system, and that this is approximately true, modulo edge effects, for the real, finite length system. Therefore, this paper confirms the effectiveness of mimicking peristalsis in bio-inspired robots, at least in the small-deformation regime. Further research will be required to test the effectiveness of this strategy if large deformations are allowed.

In this paper, we speculate on a possible application of Liquid Crystal Elastomers to the field of soft robotics. In particular, we study a concept for limbless locomotion that is amenable to miniaturisation. For this purpose, we formulate and solve the evolution equations for a strip of nematic elastomer, subject to directional frictional interactions with a flat solid substrate, and cyclically actuated by a spatially uniform, time-periodic stimulus (e.g., temperature change). The presence of frictional forces that are sensitive to the direction of sliding transforms reciprocal, ‘breathing-like’ deformations into directed forward motion. We derive formulas quantifying this motion in the case of distributed friction, by solving a differential inclusion for the displacement field. The simpler case of concentrated frictional interactions at the two ends of the strip is also solved, in order to provide a benchmark to compare the continuously distributed case with a finite-dimensional benchmark. We also provide explicit formulas for the axial force along the crawler body.

%B Journal of the Mechanics and Physics of Solids %V 84 %P 254 - 272 %G eng %U http://www.sciencedirect.com/science/article/pii/S0022509615300430 %R https://doi.org/10.1016/j.jmps.2015.07.017 %0 Journal Article %J International Journal of Non-Linear Mechanics %D 2015 %T Motility of a model bristle-bot: A theoretical analysis %A Giancarlo Cicconofri %A Antonio DeSimone %K Bristle-robots %K Crawling motility %K Frictional interactions %XBristle-bots are legged robots that can be easily made out of a toothbrush head and a small vibrating engine. Despite their simple appearance, the mechanism enabling them to propel themselves by exploiting friction with the substrate is far from trivial. Numerical experiments on a model bristle-bot have been able to reproduce such a mechanism revealing, in addition, the ability to switch direction of motion by varying the vibration frequency. This paper provides a detailed account of these phenomena through a fully analytical treatment of the model. The equations of motion are solved through an expansion in terms of a properly chosen small parameter. The convergence of the expansion is rigorously proven. In addition, the analysis delivers formulas for the average velocity of the robot and for the frequency at which the direction switch takes place. A quantitative description of the mechanism for the friction modulation underlying the motility of the bristle-bot is also provided.

%B International Journal of Non-Linear Mechanics %V 76 %P 233 - 239 %G eng %U http://www.sciencedirect.com/science/article/pii/S0020746215000025 %R https://doi.org/10.1016/j.ijnonlinmec.2014.12.010 %0 Journal Article %J International Journal of Non-Linear Mechanics %D 2014 %T Crawling on directional surfaces %A Paolo Gidoni %A Giovanni Noselli %A Antonio DeSimone %K Bio-mimetic micro-robots %K Cell migration %K Crawling motility %K Directional surfaces %K Self-propulsion %XIn this paper we study crawling locomotion based on directional frictional interactions, namely, frictional forces that are sensitive to the sign of the sliding velocity. Surface interactions of this type are common in biology, where they arise from the presence of inclined hairs or scales at the crawler/substrate interface, leading to low resistance when sliding ‘along the grain’, and high resistance when sliding ‘against the grain’. This asymmetry can be exploited for locomotion, in a way analogous to what is done in cross-country skiing (classic style, diagonal stride). We focus on a model system, namely, a continuous one-dimensional crawler and provide a detailed study of the motion resulting from several strategies of shape change. In particular, we provide explicit formulae for the displacements attainable with reciprocal extensions and contractions (breathing), or through the propagation of extension or contraction waves. We believe that our results will prove particularly helpful for the study of biological crawling motility and for the design of bio-mimetic crawling robots.

%B International Journal of Non-Linear Mechanics %V 61 %P 65 - 73 %G eng %U http://www.sciencedirect.com/science/article/pii/S0020746214000213 %R https://doi.org/10.1016/j.ijnonlinmec.2014.01.012