We study the periodic boundary value problem associated with the second order nonlinear differential equationu″+cu′+(a+(t)−μa−(t))g(u)=0, where g(u) has superlinear growth at zero and at infinity, a(t) is a periodic sign-changing weight, c∈R and μ>0 is a real parameter. Our model includes (for c=0) the so-called nonlinear Hill's equation. We prove the existence of 2m−1 positive solutions when a(t) has m positive humps separated by m negative ones (in a periodicity interval) and μ is sufficiently large, thus giving a complete solution to a problem raised by G.J. Butler in 1976. The proof is based on Mawhin's coincidence degree defined in open (possibly unbounded) sets and applies also to Neumann boundary conditions. Our method also provides a topological approach to detect subharmonic solutions.

%B Journal of Differential Equations %V 262 %P 4255 - 4291 %G eng %U http://www.sciencedirect.com/science/article/pii/S0022039617300219 %R https://doi.org/10.1016/j.jde.2017.01.009 %0 Journal Article %J Journal of Differential Equations %D 2012 %T Positive periodic solutions of second order nonlinear equations with indefinite weight: Multiplicity results and complex dynamics %A Alberto Boscaggin %A Fabio Zanolin %K Complex dynamics %K Poincaré map %K Positive periodic solutions %K Subharmonics %XWe prove the existence of a pair of positive T-periodic solutions as well as the existence of positive subharmonic solutions of any order and the presence of chaotic-like dynamics for the scalar second order ODEu″+aλ,μ(t)g(u)=0, where g(x) is a positive function on R+, superlinear at zero and sublinear at infinity, and aλ,μ(t) is a T-periodic and sign indefinite weight of the form λa+(t)−μa−(t), with λ,μ>0 and large.

%B Journal of Differential Equations %V 252 %P 2922 - 2950 %G eng %U http://www.sciencedirect.com/science/article/pii/S0022039611003883 %R https://doi.org/10.1016/j.jde.2011.09.010