%0 Report
%D 2012
%T Introduction to Riemannian and sub-Riemannian geometry
%A Andrei A. Agrachev
%A Davide Barilari
%A Ugo Boscain
%I SISSA
%G en
%U http://hdl.handle.net/1963/5877
%1 5747
%2 Mathematics
%3 Functional Analysis and Applications
%4 -1
%$ Submitted by Maria Pia Calandra (calapia@sissa.it) on 2012-05-30T13:23:26Z\r\nNo. of bitstreams: 1\r\n09M_2012_Barilari.pdf: 1146702 bytes, checksum: 28492a78df0fdf2435dd0606fdfc78f5 (MD5)
%0 Journal Article
%J Russian Mathematical Surveys. Volume 65, Issue 5, 2010, Pages: 977-978
%D 2010
%T Invariant Lagrange submanifolds of dissipative systems
%A Andrei A. Agrachev
%X We study solutions of modified Hamilton-Jacobi equations H(du/dq,q) + cu(q) =\\r\\n0, q \\\\in M, on a compact manifold M .
%B Russian Mathematical Surveys. Volume 65, Issue 5, 2010, Pages: 977-978
%I SISSA
%G en
%U http://hdl.handle.net/1963/6457
%1 6403
%2 Mathematics
%4 1
%# MAT/05 ANALISI MATEMATICA
%$ Submitted by Andrei Agrachev (agrachev@sissa.it) on 2013-02-05T14:35:25Z\\nNo. of bitstreams: 1\\n0912.2248v2.pdf: 74166 bytes, checksum: 6c6c803e56c96e455631b40eb7ef91b5 (MD5)
%R 10.1070/RM2010v065n05ABEH004707
%0 Journal Article
%J J. Funct. Anal. 256 (2009) 2621-2655
%D 2009
%T The intrinsic hypoelliptic Laplacian and its heat kernel on unimodular Lie groups
%A Andrei A. Agrachev
%A Ugo Boscain
%A Jean-Paul Gauthier
%A Francesco Rossi
%X We present an invariant definition of the hypoelliptic Laplacian on sub-Riemannian structures with constant growth vector, using the Popp\\\'s volume form introduced by Montgomery. This definition generalizes the one of the Laplace-Beltrami operator in Riemannian geometry. In the case of left-invariant problems on unimodular Lie groups we prove that it coincides with the usual sum of squares.\\nWe then extend a method (first used by Hulanicki on the Heisenberg group) to compute explicitly the kernel of the hypoelliptic heat equation on any unimodular Lie group of type I. The main tool is the noncommutative Fourier transform. We then study some relevant cases: SU(2), SO(3), SL(2) (with the metrics inherited by the Killing form), and the group SE(2) of rototranslations of the plane.\\nOur study is motivated by some recent results about the cut and conjugate loci on these sub-Riemannian manifolds. The perspective is to understand how singularities of the sub-Riemannian distance reflect on the kernel of the corresponding hypoelliptic heat equation.
%B J. Funct. Anal. 256 (2009) 2621-2655
%G en_US
%U http://hdl.handle.net/1963/2669
%1 1428
%2 Mathematics
%3 Functional Analysis and Applications
%$ Submitted by Andrea Wehrenfennig (andreaw@sissa.it) on 2008-06-11T11:38:01Z\\nNo. of bitstreams: 1\\n0806.0734v1.pdf: 494960 bytes, checksum: 640ace795ac663f09426814440b15432 (MD5)
%R 10.1016/j.jfa.2009.01.006