MENU

You are here

Publications

Export 1986 results:
Filters: Filter is   [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
W
Chen P, Quarteroni A, Rozza G. A weighted empirical interpolation method: A priori convergence analysis and applications. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/35021
Saracco G. Weighted Cheeger sets are domains of isoperimetry. Manuscripta Math. 2018 ;156:371–381.
Carlotto A, Malchiodi A. Weighted barycentric sets and singular Liouville equations on compact surfaces. Journal of Functional Analysis 262 (2012) 409-450 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/5218
Brena C, Gigli N, Honda S, Zhu X. Weakly non-collapsed RCD spaces are strongly non-collapsed. JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK [Internet]. 2023 ;2023:215–252. Available from: https://arxiv.org/abs/2110.02420
Tasso E. Weak formulation of elastodynamics in domains with growing cracks. [Internet]. 2020 ;199(4):1571 - 1595. Available from: https://doi.org/10.1007/s10231-019-00932-y
Dal Maso G, De Giorgi E, Modica L. Weak convergence of measures on spaces of semicontinuous functions. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 79 (1985), no. 5, 98-106 [Internet]. 1985 . Available from: http://hdl.handle.net/1963/463
Gigli N. Weak closure of geodesically convex subsets of Probability measures. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO [Internet]. 2009 . Available from: http://cvgmt.sns.it/paper/599/
Dubrovin B. WDVV equations and Frobenius manifolds. In: Encyclopedia of Mathematical Physics. Vol 1 A : A-C. Oxford: Elsevier, 2006, p. 438-447. Encyclopedia of Mathematical Physics. Vol 1 A : A-C. Oxford: Elsevier, 2006, p. 438-447. SISSA; 2006. Available from: http://hdl.handle.net/1963/6473
Dal Maso G, Lucardesi I. The wave equation on domains with cracks growing on a prescribed path: existence, uniqueness, and continuous dependence on the data.; 2015. Available from: http://urania.sissa.it/xmlui/handle/1963/34629
Bertola M, Gouthier D. Warped products with special Riemannian curvature. Bol. Soc. Brasil. Mat. (N.S.). 2001 ;32:45–62.
V
Bonelli G, Sciarappa A, Tanzini A, Vasko P. Vortex Partition Functions, Wall Crossing and Equivariant Gromov–Witten Invariants. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34652
Paoli E. Volume variation and heat kernel for affine control problems. 2015 .
Agrachev AA, Barilari D, Paoli E. Volume geodesic distortion and Ricci curvature for Hamiltonian dynamics. arXiv preprint arXiv:1602.08745. 2016 .
Crismale V, Lazzaroni G. Viscous approximation of quasistatic evolutions for a coupled elastoplastic-damage model. Calculus of Variations and Partial Differential Equations [Internet]. 2016 ;55:17. Available from: https://doi.org/10.1007/s00526-015-0947-6
Racca S. A Viscosity-driven crack evolution. Advances in Calculus of Variations 5 (2012) 433-483 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/5130
Gigli N, Tamanini L, Trevisan D. Viscosity Solutions of Hamilton–Jacobi Equation in RCD(K,∞) Spaces and Applications to Large Deviations. POTENTIAL ANALYSIS [Internet]. 2024 . Available from: https://arxiv.org/abs/2203.11701
Coclite GM, Risebro NH. Viscosity solutions of Hamilton-Jacobi equations with discontinuous coefficients. J. Hyperbolic Differ. Equ. 4 (2007) 771-795 [Internet]. 2007 . Available from: http://hdl.handle.net/1963/2907
Zagatti S. On viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc. 361 (2009) 41-59 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/3420
Crasta G, Piccoli B. Viscosity solutions and uniquenessfor systems of inhomogeneous balance laws. Discrete Contin. Dynam. Systems 3 (1997), no. 4, 477--5 [Internet]. 1997 . Available from: http://hdl.handle.net/1963/969
Cangiani A, Sutton OJ, Gyrya V, Manzini G. Virtual element methods for elliptic problems on polygonal meshes. In: Generalized barycentric coordinates in computer graphics and computational mechanics. Generalized barycentric coordinates in computer graphics and computational mechanics. CRC Press, Boca Raton, FL; 2018. pp. 263–279.
Cangiani A, Chatzipantelidis P, Diwan G, Georgoulis EH. Virtual element method for quasilinear elliptic problems. IMA Journal of Numerical Analysis [Internet]. 2019 ;40:2450-2472. Available from: https://doi.org/10.1093/imanum/drz035
Dubrovin B, Youjin Z. Virasoro Symmetries of the Extended Toda Hierarchy. Comm. Math.\\nPhys. 250 (2004) 161-193. [Internet]. 2004 . Available from: http://hdl.handle.net/1963/2544
Liu Z, McBride A, Saxena P, Heltai L, Qu Y, Steinmann P. Vibration Analysis of Piezoelectric Kirchhoff-Love shells based on Catmull-Clark Subdivision Surfaces. International Journal for Numerical Methods in Engineering. 2022 .
Bonelli G, Tanzini A, Jian Z. Vertices, vortices & interacting surface operators. JHEP 06(2012)178 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/4134
Cellina A, Zagatti S. A version of Olech\\\'s lemma in a problem of the calculus of variations. SIAM J. Control Optim. 32 (1994) 1114-1127 [Internet]. 1994 . Available from: http://hdl.handle.net/1963/3514

Pages

Sign in