Export 1837 results:
Filters: Filter is [Clear All Filters]
.
Approximation, Stability and control for Conservation Laws. [Internet]. 1999 . Available from: http://hdl.handle.net/1963/5500
. On the area of the graph of a piecewise smooth map from the plane to the plane with a curve discontinuity. ESAIM: COCV [Internet]. 2016 ;22(1):29-63. Available from: https://www.esaim-cocv.org/articles/cocv/abs/2016/01/cocv140065/cocv140065.html
. Arnold diffusion: a functional analysis approach. Pr. Inst. Mat. Nats. Akad. Nauk Ukr. Mat. Zastos., 43, Part 1, 2, Natsīonal. Akad. Nauk Ukraïni, Īnst. Mat., Kiev, 2002. 2002 .
. Arnold's Diffusion in nearly integrable isochronous Hamiltonian systems. [Internet]. 2000 . Available from: http://hdl.handle.net/1963/1554
. An artificial neural network approach to bifurcating phenomena in computational fluid dynamics. 2021 .
. An artificial viscosity approach to quasistatic crack growth.; 2006. Available from: http://hdl.handle.net/1963/1850
. A(SLq(2)) at roots of unity is a free module over A(SL(2)). Lett. Math. Phys., 2000, 52, 339 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/1500
. Aspects of Quantum Field Theory on Quantum Spacetime. PoS CNCFG2010:027,2010 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/4171
. Asymptotic approach to a rotational Taylor swimming sheet. Comptes Rendus. Mécanique. 2021 ;349:103–116.
. Asymptotic behavior of nonlinear Dirichlet problems in perforated domains. Ann. Mat. Pura Appl. (4) 174 (1998), 13--72 [Internet]. 1998 . Available from: http://hdl.handle.net/1963/1064
. Asymptotic behaviour and correctors for linear Dirichlet problems with simultaneously varying operators and domains. Ann. Inst. H. Poincaré. Anal. Non Linéaire 21 (2004), (4), p. 445-486. [Internet]. 2004 . Available from: http://hdl.handle.net/1963/1611
. Asymptotic Behaviour of Dirichlet Problems in Perforated Domains. [Internet]. 1994 . Available from: http://hdl.handle.net/1963/5714
. Asymptotic behaviour of nonlinear elliptic higher order equations in perforated domains. Journal d\\\'Analyse Mathematique, Volume 79, 1999, Pages: 63-112 [Internet]. 1999 . Available from: http://hdl.handle.net/1963/6433
. Asymptotic behaviour of smooth solutions for partially dissipative hyperbolic systems with a convex entropy. Comm. Pure Appl. Math. 60 (2007) 1559-1622 [Internet]. 2007 . Available from: http://hdl.handle.net/1963/1780
. On the asymptotic behaviour of solutions to Pazy\\\'s class of evolution equations. [Internet]. 1983 . Available from: http://hdl.handle.net/1963/276
. The Asymptotic Behaviour of the Fourier Transforms of Orthogonal Polynomials II: L.I.F.S. Measures and Quantum Mechanics. Ann. Henri Poincar´e 8 (2007), 301–336. 2007 .
. Asymptotic evolution for the semiclassical nonlinear Schrödinger equation in presence of electric and magnetic fields. Journal of Differential Equations [Internet]. 2008 ;245:2566 - 2584. Available from: http://www.sciencedirect.com/science/article/pii/S002203960800243X
. On asymptotic expansions in spin-boson models. Ann. Henri Poincaré [Internet]. 2018 ;19:515–564. Available from: https://doi.org/10.1007/s00023-017-0625-7
. Asymptotic Morse theory for the equation $\\\\Delta v=2v\\\\sb x\\\\wedge v\\\\sb y$. Comm. Anal. Geom. 13 (2005) 187-252 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/3533
. An asymptotic reduction of a Painlevé VI equation to a Painlevé III. J.Phys.A: Math.Theor. 44 (2011) 215203 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/5124
. On asymptotic regimes of orthogonal polynomials with complex varying quartic exponential weight. SIGMA Symmetry Integrability Geom. Methods Appl. [Internet]. 2016 ;12:Paper No. 118, 50 pages. Available from: http://dx.doi.org/10.3842/SIGMA.2016.118
. Asymptotic variational wave equations. Arch. Ration. Mech. Anal. 183 (2007) 163-185 [Internet]. 2007 . Available from: http://hdl.handle.net/1963/2182
. Asymptotics of orthogonal polynomials with complex varying quartic weight: global structure, critical point behavior and the first Painlevé equation. Constr. Approx. [Internet]. 2015 ;41:529–587. Available from: http://dx.doi.org/10.1007/s00365-015-9288-0
. Asymptotics of the first Laplace eigenvalue with Dirichlet regions of prescribed length. [Internet]. 2013 . Available from: http://urania.sissa.it/xmlui/handle/1963/35141
.