Export 1817 results:
Filters: Filter is [Clear All Filters]
Biological Fluid Dynamics, Non-linear Partial Differential Equations. In: Encyclopedia of Complexity and Systems Science / Robert A. Meyers (ed.). - Springer, 2009, 548-554. Encyclopedia of Complexity and Systems Science / Robert A. Meyers (ed.). - Springer, 2009, 548-554. ; 2009. Available from: http://hdl.handle.net/1963/2630
. Biorthogonal Laurent polynomials, Töplitz determinants, minimal Toda orbits and isomonodromic tau functions. Constr. Approx. 2007 ;26:383–430.
. Biorthogonal polynomials for two-matrix models with semiclassical potentials. J. Approx. Theory. 2007 ;144:162–212.
. . Birkhoff normal form and long time existence for periodic gravity water waves. Comm. Pure Appl. Math. [Internet]. 2023 ;76:1416–1494. Available from: https://doi.org/10.1002/cpa.22041
. Birkhoff normal form for gravity water waves. Water Waves [Internet]. 2021 ;3:117–126. Available from: https://doi.org/10.1007/s42286-020-00024-y
. A Birkhoff-Lewis-Type Theorem for Some Hamiltonian PDEs. SIAM J. Math. Anal. 37 (2006) 83-102 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2159
. Bishop and Laplacian Comparison Theorems on Three Dimensional Contact Subriemannian Manifolds with Symmetry. [Internet]. 2011 . Available from: http://hdl.handle.net/1963/6508
. BisPy: Bisimulation in Python. Journal of Open Source Software. 2021 ;6:3519.
. Black Holes, Instanton Counting on Toric Singularities and q-Deformed Two-Dimensional Yang-Mills Theory.; 2007. Available from: http://hdl.handle.net/1963/1888
. BlackNUFFT: Modular customizable black box hybrid parallelization of type 3 NUFFT in 3D. Computer Physics Communications [Internet]. 2019 ;235:324 - 335. Available from: http://www.sciencedirect.com/science/article/pii/S0010465518303539
. BladeX: Python Blade Morphing. The Journal of Open Source Software. 2019 ;4:1203.
. Blowup asymptotics for scalar conservation laws with a source. Comm. in Partial Differential Equations 24 (1999) 2237-2261 [Internet]. 1999 . Available from: http://hdl.handle.net/1963/3482
. On the Blow-up for a Discrete Boltzmann Equation in the Plane. Discrete Contin. Dyn. Syst. 13 (2005) 1-12 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/2244
. On the blow-up of GSBV functions under suitable geometric properties of the jump set. Advances in Calculus of Variations [Internet]. 2020 . Available from: https://doi.org/10.1515/acv-2019-0068
. Blow-up solutions for the Schrödinger equation in dimension three with a concentrated nonlinearity. Ann. Inst. H. Poincare Anal. Non Lineaire 21 (2004) 121-137 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/2998
. A Borel-Weil-Bott approach to representations of \rm sl\sb q(2,C). Lett. Math. Phys. 29 (1993) 215-217 [Internet]. 1993 . Available from: http://hdl.handle.net/1963/3538
. Born approximation in the problem of the rigorous derivation of the Gross-Pitaevskii equation.; 2006. Available from: http://hdl.handle.net/1963/1819
. Bose-Einstein condensation: analysis of problems and rigorous results.; 2007. Available from: http://hdl.handle.net/1963/2189
. Bound and ground states of coupled nonlinear Schrödinger equations. C. R. Acad. Sci. Paris, Ser. I 342 (2006) 453-458 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2149
. Bound states of Nonlinear Schroedinger Equations with Potentials Vanishing at Infinity. J. Anal. Math. 98 (2006) 317-348 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/1756
. Boundary control and shape optimization for the robust design of bypass anastomoses under uncertainty. Mathematical Modelling and Numerical Analysis, in press, 2012-13 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6337
. On the Boundary Control of Systems of Conservation Laws. SIAM J. Control Optim. 41 (2002) 607-622 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/3070
. Boundary interface for the Allen-Cahn equation. J. Fixed Point Theory Appl. 1 (2007) 305-336 [Internet]. 2007 . Available from: http://hdl.handle.net/1963/2027
. The boundary Riemann solver coming from the real vanishing viscosity approximation. Arch. Ration. Mech. Anal. 191 (2009) 1-96 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/1831
.