Export 1816 results:
Filters: Filter is [Clear All Filters]
Ground states of nonlinear Schroedinger equations with potentials vanishing at infinity. J. Eur. Math. Soc. 7 (2005) 117-144 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/2352
. Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres, Part I. Comm. Math. Phys. 235 (2003) no.3, 427-466 [Internet]. 2003 . Available from: http://hdl.handle.net/1963/1633
. Solid tumors are poroelastic solids with a chemo-mechanical feedback on growth. J. Elast. 2017 ;129:107–124.
. Special functions with bounded variation and with weakly differentiable traces on the jump set. NoDEA Nonlinear Differential Equations Appl. 5 (1998), no. 2, 219--243 [Internet]. 1998 . Available from: http://hdl.handle.net/1963/1025
. A general chain rule for distributional derivatives. Proc. Amer. Math. Soc. 108 (1990), no. 3, 691-702 [Internet]. 1990 . Available from: http://hdl.handle.net/1963/650
. Deformed Lorentz symmetry and relative locality in a curved/expanding spacetime. Phys. Rev. D 86 (2012) 124035. 2012 .
. Minimal partitions and image classification using a gradient-free perimeter approximation. SISSA; 2013. Available from: http://hdl.handle.net/1963/6976
. Topological sensitivity analysis for high order elliptic operators. SISSA; 2012. Available from: http://hdl.handle.net/1963/6343
. Nearly time optimal stabilizing patchy feedbacks. Ann. Inst. H. Poincare Anal. Non Lineaire 24 (2007) 279-310 [Internet]. 2007 . Available from: http://hdl.handle.net/1963/2185
. Well-posedness for general 2x2 systems of conservation laws. Mem. Amer. Math. Soc. 169 (2004), no. 801, x+170 pp. [Internet]. 2004 . Available from: http://hdl.handle.net/1963/1241
. Flow Stability of Patchy Vector Fields and Robust Feedback Stabilization. SIAM J. Control Optim. 41 (2002) 1455-1476 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/3073
. Homogeneous tangent vectors and high order necessary conditions for optimal controls. J. Dynam. Control Systems 3 (1997), no. 2, 205--240 [Internet]. 1997 . Available from: http://hdl.handle.net/1963/1015
. Existence of solutions for a class of non-convex differential inclusions. Rend.Sem.Mat.Univ. Padova, 83 (1990), 71-76 [Internet]. 1990 . Available from: http://hdl.handle.net/1963/792
. Stability rates for patchy vector fields. ESAIM COCV 10 (2004) 168-200 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/2959
. On the attainable set for Temple class systems with boundary controls. SIAM J. Control Optim. 43 (2005) 2166-2190 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/1581
. A dynamic mode decomposition extension for the forecasting of parametric dynamical systems. arXiv preprint arXiv:2110.09155. 2021 .
. BisPy: Bisimulation in Python. Journal of Open Source Software. 2021 ;6:3519.
. Optimal design of planar shapes with active materials. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences [Internet]. 2022 ;478:20220256. Available from: https://royalsocietypublishing.org/doi/abs/10.1098/rspa.2022.0256
. Mathematical modelling of axonal cortex contractility. Brain Multiphysics. 2022 ;2.
. A Theoretical Study on the Transient Morphing of Linear Poroelastic Plates. Journal of Applied Mechanics [Internet]. 2020 ;88. Available from: https://doi.org/10.1115/1.4048806
. Integrable lifts for transitive Lie algebroids. ArXiv e-prints [Internet]. 2017 . Available from: https://arxiv.org/pdf/1707.04855.pdf
. New results on Gamma-limits of integral functionals. [Internet]. 2014 . Available from: http://hdl.handle.net/1963/5880
. Gamma-convergence and H-convergence of linear elliptic operators. Journal de Mathématiques Pures et Appliquées, Available online 12 September 2012 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/5878
. Global, finite energy, weak solutions for the NLS with rough, time-dependent magnetic potentials. Zeitschrift für angewandte Mathematik und Physik [Internet]. 2018 ;69:46. Available from: https://doi.org/10.1007/s00033-018-0938-5
. Complex Friedrichs systems and applications.; 2017. Available from: http://urania.sissa.it/xmlui/handle/1963/35270
.