Export 1844 results:
Filters: Filter is [Clear All Filters]
.
Quasi-periodic standing wave solutions of gravity-capillary water waves. Mem. Amer. Math. Soc. [Internet]. 2020 ;263:v+171. Available from: https://doi.org/10.1090/memo/1273
. Time periodic solutions of completely resonant Klein-Gordon equations on $\mathbbS^3$. Ann. Inst. H. Poincaré C Anal. Non Linéaire . 2024 .
. Quasi-periodic oscillations for wave equations under periodic forcing. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 2005 ;16:109–116.
. Soluzioni periodiche di PDEs Hamiltoniane. Bollettino dell\\\'Unione Matematica Italiana Serie 8 7-B (2004), p. 647-661 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/4582
. Bifurcation of free vibrations for completely resonant wave equations. Boll. Unione Mat. Ital. Sez. B 7 (2004) 519-528 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/2245
. Stokes waves at the critical depth are modulationally unstable. Comm. Math. Phys. [Internet]. 2024 ;405:Paper No. 56, 67. Available from: https://doi.org/10.1007/s00220-023-04928-x
. Birkhoff normal form for gravity water waves. Water Waves [Internet]. 2021 ;3:117–126. Available from: https://doi.org/10.1007/s42286-020-00024-y
. Cantor families of periodic solutions for completely resonant nonlinear wave equations. Duke Math. J. 134 (2006) 359-419 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2161
. Quasi-periodic solutions of PDEs. In: Séminaire Laurent Schwartz–-Équations aux dérivées partielles et applications. Année 2011–2012. Séminaire Laurent Schwartz–-Équations aux dérivées partielles et applications. Année 2011–2012. École Polytech., Palaiseau; 2013. p. Exp. No. XXX, 11.
. Existence and stability of quasi-periodic solutions for derivative wave equations. Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica e Applicazioni. 2013 ;24:199-214.
. KAM for Vortex Patches. Regular and Chaotic Dynamics [Internet]. 2024 ;29(4):654 - 676. Available from: https://doi.org/10.1134/S1560354724540013
. Periodic solutions of nonlinear wave equations with general nonlinearities. Comm. Math. Phys. [Internet]. 2003 ;243:315–328. Available from: https://doi.org/10.1007/s00220-003-0972-8
. Cantor families of periodic solutions for completely resonant wave equations. Frontiers of Mathematics in China. 2008 ;3:151-165.
. Time quasi-periodic vortex patches of Euler equation in the plane. Invent. Math. [Internet]. 2023 ;233:1279–1391. Available from: https://doi.org/10.1007/s00222-023-01195-4
. Optimal stability and instability results for a class of nearly integrable Hamiltonian systems. Atti.Accad.Naz.Lincei Cl.Sci.Fis.Mat.Natur.Rend.Lincei (9) Mat.Appl.13(2002),no.2,77-84 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1596
. Some remarks on a variational approach to Arnold's diffusion. Discrete Contin. Dynam. Systems [Internet]. 1996 ;2:307–314. Available from: https://doi.org/10.3934/dcds.1996.2.307
. Quasi-periodic solutions of nonlinear wave equations on the $d$-dimensional torus. EMS Publishing House, Berlin; 2020 p. xv+358.
. Arnold diffusion: a functional analysis approach. Pr. Inst. Mat. Nats. Akad. Nauk Ukr. Mat. Zastos., 43, Part 1, 2, Natsīonal. Akad. Nauk Ukraïni, Īnst. Mat., Kiev, 2002. 2002 .
. Quasi-periodic solutions of completely resonant forced wave equations. Comm. Partial Differential Equations [Internet]. 2006 ;31:959–985. Available from: https://doi.org/10.1080/03605300500358129
. Branching of Cantor Manifolds of Elliptic Tori and Applications to PDEs. Communications in Mathematical Physics. 2011 ;305:741-796.
. Homoclinics and chaotic behaviour for perturbed second order systems. Ann. Mat. Pura Appl. (4) [Internet]. 1999 ;176:323–378. Available from: https://doi.org/10.1007/BF02506001
. Nonlinear wave and Schrödinger equations on compact Lie groups and homogeneous spaces. Duke Mathematical Journal. 2011 ;159(3).
. Non-compactness and multiplicity results for the Yamabe problem on Sn. J. Funct. Anal. 180 (2001) 210-241 [Internet]. 2001 . Available from: http://hdl.handle.net/1963/1345
. Benjamin-Feir instability of Stokes waves. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. [Internet]. 2022 ;33:399–412. Available from: https://doi.org/10.4171/rlm/975
.