Parameter differentiation and quantum state decomposition for time varying Schrödinger equations. Rep. Math. Phys. 52 (2003) 381-400 [Internet]. 2003 . Available from: http://hdl.handle.net/1963/3017
. Partition functions for matrix models and isomonodromic tau functions. J. Phys. A. 2003 ;36:3067–3083.
. Periodic solutions of nonlinear wave equations with general nonlinearities. Comm. Math. Phys. [Internet]. 2003 ;243:315–328. Available from: https://doi.org/10.1007/s00220-003-0972-8
. Poisson Pencils, Integrability, and Separation of Variables. SISSA; 2003. Available from: http://hdl.handle.net/1963/3026
. Positive solutions to a class of quasilinear elliptic equations on R. Discrete Contin.Dyn.Syst. 9 (2003), no.1, 55-68 [Internet]. 2003 . Available from: http://hdl.handle.net/1963/1628
. Prescribing scalar and boundary mean curvature on the three dimensional half sphere. J. Geom. Anal. 13 (2003) 255-289 [Internet]. 2003 . Available from: http://hdl.handle.net/1963/3086
. Quantum spin coverings and statistics. J. Phys. A 36 (2003), no. 13, 3829-3840 [Internet]. 2003 . Available from: http://hdl.handle.net/1963/1667
. Second and third order observables of the two-matrix model. J. High Energy Phys. 2003 :062, 30 pp. (electronic).
. Separation of variables for Bi-Hamiltonian systems. Math. Phys. Anal. Geom. 6 (2003) 139-179 [Internet]. 2003 . Available from: http://hdl.handle.net/1963/1598
. Sequences of Singularly Perturbed Functionals Generating Free-Discontinuity Problems. SIAM J. Math. Anal. 35 (2003) 759-805 [Internet]. 2003 . Available from: http://hdl.handle.net/1963/3071
. Single-Input Control Affine Systems: Local Regularity of Optimal Trajectories and a Geometric Controllability Problem. [Internet]. 2003 . Available from: http://hdl.handle.net/1963/5342
. Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres, Part I. Comm. Math. Phys. 235 (2003) no.3, 427-466 [Internet]. 2003 . Available from: http://hdl.handle.net/1963/1633
. Some results on the boundary control of systems of conservation laws. SIAM J.Control Optim. 41 (2003),no.2, 607 [Internet]. 2003 . Available from: http://hdl.handle.net/1963/1615
. Space-adiabatic perturbation theory. Adv. Theor. Math. Phys. 7 (2003) 145-204 [Internet]. 2003 . Available from: http://hdl.handle.net/1963/3041
. A stability result for nonlinear Neumann problems under boundary variations. J.Math. Pures Appl. (9) 82 (2003) no.5 , 503 [Internet]. 2003 . Available from: http://hdl.handle.net/1963/1618
. Admissible Riemann solvers for genuinely nonlinear P-systems of mixed type. J. Differ. Equations, 2002, 180, 395 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1491
. Arnold diffusion: a functional analysis approach. Pr. Inst. Mat. Nats. Akad. Nauk Ukr. Mat. Zastos., 43, Part 1, 2, Natsīonal. Akad. Nauk Ukraïni, Īnst. Mat., Kiev, 2002. 2002 .
. On the Boundary Control of Systems of Conservation Laws. SIAM J. Control Optim. 41 (2002) 607-622 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/3070
. The Calibration Method for Free-Discontinuity Problems on Vector-Valued Maps. J. Convex Anal. 9 (2002) 1-29 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/3049
. A center manifold technique for tracing viscous waves. Commun. Pure Appl. Anal. 1 (2002) 161-190 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/3075
. Chaotic dynamics for perturbations of infinite-dimensional Hamiltonian systems. Nonlinear Anal. 48 (2002) 481-504 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1279
. Coherent state realizations of $\rm su(n+1)$ on the $n$-torus. J. Math. Phys. 2002 ;43:3425–3444.
. Controllability of quantum mechanical systems by root space decomposition of su(N). J.Math.Phys. 43(2002), no.5, 2051 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1613
. Curvature theory of boundary phases: the two-dimensional case. Interfaces Free Bound. 7 (2002) 345-370 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/3537
. Duality, biorthogonal polynomials and multi-matrix models. Comm. Math. Phys. 2002 ;229:73–120.
.