MENU

You are here

Publications

Export 1836 results:
Filters: Filter is   [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
S
Sartori A, Giuliani N, Bardelloni M, Heltai L. Deal2lkit: a Toolkit Library for High Performance Programming in deal.II. [Internet]. 2015 . Available from: http://urania.sissa.it/xmlui/handle/1963/35006
Sartori A, Baroli D, Cammi A, Luzzi L, Rozza G. A reduced order model for multi-group time-dependent parametrized reactor spatial kinetics. 22nd International Conference on Nuclear Engineering ICONE22 [Internet]. 2014 :V005T17A048-V005T17A048. Available from: http://urania.sissa.it/xmlui/handle/1963/35123
Sartori A, Cammi A, Luzzi L, Rozza G. Reduced basis approaches in time-dependent noncoercive settings for modelling the movement of nuclear reactor control rods. Communications in Computational Physics [Internet]. 2016 ;(in press). Available from: http://urania.sissa.it/xmlui/handle/1963/34963
Sartori A, Cammi A, Luzzi L, Rozza G. A Reduced Basis Approach for Modeling the Movement of Nuclear Reactor Control Rods. NERS-14-1062; ASME J of Nuclear Rad Sci, 2, 2 (2016) 021019 [Internet]. 2016 ;2(2):8. Available from: http://urania.sissa.it/xmlui/handle/1963/35192
Sartori A, Cammi A, Luzzi L, Rozza G. A multi-physics reduced order model for the analysis of Lead Fast Reactor single channel. Annals of Nuclear Energy, 87, 2 (2016): pp. 198-208 [Internet]. 2016 ;87:208. Available from: http://urania.sissa.it/xmlui/handle/1963/35191
Sartori A, Giuliani N, Bardelloni M, Heltai L. deal2lkit: A toolkit library for high performance programming in deal.II. SOFTWAREX. 2018 ;7:318–327.
Sarychev A. High-order Averaging and Stability of Time-Varying Systems. [Internet]. 2000 . Available from: http://hdl.handle.net/1963/1465
Saswati R, Heltai L, Costanzo F. Benchmarking the Immersed Finite Element Method for Fluid-Structure Interaction Problems. Computers and Mathematics with Applications 69 (2015) 1167–1188. 2015 .
Scagliotti A. A Gradient Flow Equation for Optimal Control Problems With End-point Cost. [Internet]. 2022 . Available from: https://doi.org/10.1007/s10883-022-09604-2
Scagliotti A, P. Franzone C. A piecewise conservative method for unconstrained convex optimization. [Internet]. 2022 ;81(1):251 - 288. Available from: https://doi.org/10.1007/s10589-021-00332-0
Scagliotti A. Deep Learning Approximation of Diffeomorphisms via Linear-Control Systems. [Internet]. 2021 . Available from: https://arxiv.org/abs/2110.12393
Scala R, Van Goethem N. Dislocations at the continuum scale: functional setting and variational properties.; 2014. Available from: http://cvgmt.sns.it/paper/2294/
Scala R, Van Goethem N. Currents and dislocations at the continuum scale. Methods and Applications of Analysis. 2016 ;23:1–34.
Scala R. Limit of viscous dynamic processes in delamination as the viscosity and inertia vanish. ESAIM: COCV [Internet]. 2017 ;23:593-625. Available from: https://doi.org/10.1051/cocv/2016006
Scala R. A variational approach to statics and dynamics of elasto-plastic systems. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/7471
Scalise JVittorio. Framed symplectic sheaves on surfaces. International Journal of Mathematics [Internet]. 2018 ;29:1850007. Available from: https://doi.org/10.1142/S0129167X18500076
Scalise JVittorio. Frames symplectic sheaves on surfaces and their ADHM data. 2016 .
Scandone R. Zero modes and low-energy resolvent expansion for three dimensional Schrodinger operators with point interactions.; 2019. Available from: https://arxiv.org/abs/1901.02449
Schaeffer R, Moschella U, Bertola M, Gorini V. Generation of primordial fluctuations in curved spaces. Gravit. Cosmol. 1998 ;4:121–127.
Selvitella A. Uniqueness and nondegeneracy of the ground state for a quasilinear Schrödinger equation with a small parameter. Nonlinear Analysis: Theory, Methods & Applications [Internet]. 2011 ;74:1731 - 1737. Available from: http://www.sciencedirect.com/science/article/pii/S0362546X10007613
Selvitella A. Asymptotic evolution for the semiclassical nonlinear Schrödinger equation in presence of electric and magnetic fields. Journal of Differential Equations [Internet]. 2008 ;245:2566 - 2584. Available from: http://www.sciencedirect.com/science/article/pii/S002203960800243X
Selvitella A. Semiclassical evolution of two rotating solitons for the Nonlinear Schrödinger Equation with electric potential. Adv. Differential Equations [Internet]. 2010 ;15:315–348. Available from: https://projecteuclid.org:443/euclid.ade/1355854752
Sfecci A. A nonresonance condition for radial solutions of a nonlinear Neumann elliptic problem. Nonlinear Analysis: Theory, Methods & Applications [Internet]. 2012 ;75:6191 - 6202. Available from: http://www.sciencedirect.com/science/article/pii/S0362546X12002659
Shah N, Girfoglio M, Rozza G. Thermomechanical Modelling for Industrial Applications. In: Progress in Industrial Mathematics at ECMI 2021. Progress in Industrial Mathematics at ECMI 2021. Online conference hosted by the Bergische Universität Wuppertal: Springer, Cham; 2022. Available from: https://link.springer.com/chapter/10.1007/978-3-031-11818-0_28
Shah N, Hess MW, Rozza G. Discontinuous Galerkin Model Order Reduction of Geometrically Parametrized Stokes Equation. In: Vermolen FJ, Vuik C Numerical Mathematics and Advanced Applications ENUMATH 2019. Numerical Mathematics and Advanced Applications ENUMATH 2019. Cham: Springer International Publishing; 2021.

Pages

Sign in