MENU

You are here

Publications

Export 1817 results:
Filters: Filter is   [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
C
DeSimone A, Heltai L, Alouges F, Aline L-L. Computing optimal strokes for low reynolds number swimmers. In: Natural locomotion in fluids and on surfaces : swimming, flying, and sliding / editors Stephen Childress, Anette Hosoi, William W. Schultz, and Z. Jane Wang, editors,. Natural locomotion in fluids and on surfaces : swimming, flying, and sliding / editors Stephen Childress, Anette Hosoi, William W. Schultz, and Z. Jane Wang, editors,. Springer; 2012. Available from: http://hdl.handle.net/1963/6445
Malchiodi A. Concentrating solutions of some singularly perturbed elliptic equations. Front. Math. China 3 (2008) 239-252 [Internet]. 2008 . Available from: http://hdl.handle.net/1963/2657
Malchiodi A. Concentration at curves for a singularly perturbed Neumann problem in three-dimensional domains. Geometric and Functional Analysis 15 (6) 1162-1222 (2005) [Internet]. 2005 . Available from: http://hdl.handle.net/1963/4866
Mahmoudi F, Malchiodi A. Concentration at manifolds of arbitrary dimension for a singularly perturbed Neumann problem. Atti Accad. Naz Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 17 (2006) 279-290 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2170
Bianchini S, Marconi E. On the concentration of entropy for scalar conservation laws. Discrete & Continuous Dynamical Systems - S [Internet]. 2016 ;9:73. Available from: http://aimsciences.org//article/id/ce4eb91e-9553-4e8d-8c4c-868f07a315ae
Ianni I, Vaira G. On concentration of positive bound states for the Schrödinger-Poisson problem with potentials. Advanced nonlinear studies. 2008 ;8:573–595.
Dipierro S. Concentration of solutions for a singularly perturbed mixed problem in non-smooth domains. Journal of Differential Equations [Internet]. 2013 ;254:30 - 66. Available from: http://www.sciencedirect.com/science/article/pii/S0022039612003312
Dipierro S. Concentration of solutions for a singularly perturbed Neumann problem in non-smooth domains. Annales de l'I.H.P. Analyse non linéaire [Internet]. 2011 ;28:107-126. Available from: http://www.numdam.org/item/AIHPC_2011__28_1_107_0
Garcia Azorero J, Malchiodi A, Montoro L, Peral I. Concentration of solutions for some singularly perturbed mixed problems. Part I: existence results. Arch. Ration. Mech. Anal. 196 (2010) 907-950 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/3406
Garcia Azorero J, Malchiodi A, Montoro L, Peral I. Concentration of solutions for some singularly perturbed mixed problems: Asymptotics of minimal energy solutions. Ann. Inst. H. Poincare Anal. Non Lineaire 27 (2010) 37-56 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/3409
Bonheure D, Di Cosmo J, Mercuri C. Concentration on circles for nonlinear Schrödinger–Poisson systems with unbounded potentials vanishing at infinity. Communications in Contemporary Mathematics [Internet]. 2012 ;14:1250009. Available from: https://doi.org/10.1142/S0219199712500095
Mahmoudi F, Malchiodi A. Concentration on minimal submanifolds for a singularly perturbed Neumann problem. Adv. Math. 209 (2007) 460-525 [Internet]. 2007 . Available from: http://hdl.handle.net/1963/2013
Ambrosetti A, Malchiodi A. Concentration phenomena for nonlinear Schrödinger equations: Recent results and new perspectives. In: Perspectives in Nonlinear Partial Differential Equations: In Honor of Haïm Brezis / ed. by Henri Beresticky [et al.]. - Providence : American Mathematical Society, 2007. - (Contemporary mathematics ; 446). - p. 19-30. Perspectives in Nonlinear Partial Differential Equations: In Honor of Haïm Brezis / ed. by Henri Beresticky [et al.]. - Providence : American Mathematical Society, 2007. - (Contemporary mathematics ; 446). - p. 19-30. American Mathematical Society; 2007. Available from: http://hdl.handle.net/1963/3516
Lo Giudice A, Cacciola S, Donten-Bury M, Dumitrescu O, Park J. Cones of divisors of blow-ups of projective spaces. Le Matematiche (Catania), volume 66, Issue no.2, (2011), pages : 153-187 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/6613
Lucardesi I, Morandotti M, Scala R, Zucco D. Confinement of dislocations inside a crystal with a prescribed external strain. [Internet]. 2016 . Available from: http://urania.sissa.it/xmlui/handle/1963/35247
Boarotto F. Conformal Equivalence of 3D Contact Structures on Lie Groups. Journal of Dynamical and Control Systems [Internet]. 2016 ;22:251–283. Available from: https://doi.org/10.1007/s10883-015-9273-8
Gover RR, Canzani Y, Jakobson D, Ponge R, Malchiodi A. Conformal invariants from nodal sets. I. negative eigenvalues and curvature prescription. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/35128
Malchiodi A. Conformal Metrics with Constant Q-Curvature. SIGMA 3 (2007) 120 [Internet]. 2007 . Available from: http://hdl.handle.net/1963/2605
Mondino A. The Conformal Willmore Functional: A Perturbative Approach. Journal of Geometric Analysis [Internet]. 2013 ;23:764–811. Available from: https://doi.org/10.1007/s12220-011-9263-3
Cangiani A, Manzini G, Sutton OJ. Conforming and nonconforming virtual element methods for elliptic problems. IMA J. Numer. Anal. [Internet]. 2017 ;37:1317–1354. Available from: https://doi.org/10.1093/imanum/drw036
Agrachev AA, Rizzi L, Silveira P. On conjugate times of LQ optimal control problems. [Internet]. 2014 . Available from: http://hdl.handle.net/1963/7227
Catino G, Mazzieri L. Connected Sum Construction for σk-Yamabe Metrics. Journal of Geometric Analysis 23, nr.2 (2013), pages 812-854 [Internet]. 2013 . Available from: http://hdl.handle.net/1963/6441
Bianchini S, Spinolo L. A connection between viscous profiles and singular ODEs. Rend. Istit. Mat. Univ. Trieste 41 (2009) 35-41 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/2555
Coclite GM, Risebro NH. Conservation laws with time dependent discontinuous coefficients. SIAM J. Math. Anal. 36 (2005) 1293-1309 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/1666
Fanelli F. Conservation of Geometric Structures for Non-Homogeneous Inviscid Incompressible Fluids. Communications in Partial Differential Equations [Internet]. 2012 ;37:1553-1595. Available from: https://doi.org/10.1080/03605302.2012.698343

Pages

Sign in