MENU

You are here

Publications

Export 39 results:
Filters: Author is Giovanni Stabile  [Clear All Filters]
Journal Article
Karatzas EN, Stabile G, Nouveau L, Scovazzi G, Rozza G. A reduced-order shifted boundary method for parametrized incompressible Navier–Stokes equations. Computer Methods in Applied Mechanics and Engineering [Internet]. 2020 ;370. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087886522&doi=10.1016%2fj.cma.2020.113273&partnerID=40&md5=d864e4808190b682ecb1c8b27cda72d8
Stabile G, Ballarin F, Zuccarino G, Rozza G. A reduced order variational multiscale approach for turbulent flows. Advances in Computational Mathematics [Internet]. 2019 ;45:2349-2368. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068076665&doi=10.1007%2fs10444-019-09712-x&partnerID=40&md5=af0142e6d13bbc2e88c6f31750aef6ad
Star K, Sanderse B, Stabile G, Rozza G, Degroote J. Reduced order models for the incompressible Navier-Stokes equations on collocated grids using a `discretize-then-project' approach. International Journal for Numerical Methods in Fluids [Internet]. 2021 ;93:2694–2722. Available from: https://doi.org/10.1002/fld.4994
Karatzas EN, Stabile G, Nouveau L, Scovazzi G, Rozza G. A reduced basis approach for PDEs on parametrized geometries based on the shifted boundary finite element method and application to a Stokes flow. Computer Methods in Applied Mechanics and Engineering [Internet]. 2019 ;347:568-587. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060107322&doi=10.1016%2fj.cma.2018.12.040&partnerID=40&md5=1a3234f0cb000c91494d946428f8ebef
Busto S, Stabile G, Rozza G, Vázquez-Cendón ME. POD–Galerkin reduced order methods for combined Navier–Stokes transport equations based on a hybrid FV-FE solver. Computers and Mathematics with Applications [Internet]. 2020 ;79:256-273. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068068567&doi=10.1016%2fj.camwa.2019.06.026&partnerID=40&md5=a8dcce1b53b8ee872d174bbc4c20caa3
Star K, Stabile G, Rozza G, Degroote J. A POD-Galerkin reduced order model of a turbulent convective buoyant flow of sodium over a backward-facing step. Applied Mathematical Modelling. 2021 ;89:486-503.
Stabile G, Hijazi S, Mola A, Lorenzi S, Rozza G. POD-Galerkin reduced order methods for CFD using Finite Volume Discretisation: vortex shedding around a circular cylinder. Communications in Applied and Industrial Mathematics. 2017 ;8:210-236.
Georgaka S, Stabile G, Rozza G, Bluck MJ. Parametric POD-Galerkin Model Order Reduction for Unsteady-State Heat Transfer Problems. Communications in Computational Physics [Internet]. 2019 ;27:1–32. Available from: https://arxiv.org/abs/1808.05175
Morelli UEmil, Barral P, Quintela P, Rozza G, Stabile G. A numerical approach for heat flux estimation in thin slabs continuous casting molds using data assimilation. International Journal for Numerical Methods in Engineering [Internet]. 2021 ;122:4541–4574. Available from: https://doi.org/10.1002/nme.6713
Stabile G, Matthies HG, Borri C. A novel reduced order model for vortex induced vibrations of long flexible cylinders. [Internet]. 2018 ;156:191–207. Available from: https://doi.org/10.1016/j.oceaneng.2018.02.064
Star K, Stabile G, Belloni F, Rozza G, Degroote J. A novel iterative penalty method to enforce boundary conditions in Finite Volume POD-Galerkin reduced order models for fluid dynamics problems. Communications in Computational Physics. 2021 ;30:34–66.
Romor F, Stabile G, Rozza G. Non-linear manifold reduced-order models with convolutional autoencoders and reduced over-collocation method. Journal of Scientific Computing [Internet]. 2023 ;94(3). Available from: https://link.springer.com/article/10.1007/s10915-023-02128-2
Papapicco D, Demo N, Girfoglio M, Stabile G, Rozza G. The Neural Network shifted-proper orthogonal decomposition: A machine learning approach for non-linear reduction of hyperbolic equations. Computer Methods in Applied Mechanics and Engineering [Internet]. 2022 ;392. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85124488633&doi=10.1016%2fj.cma.2022.114687&partnerID=40&md5=12f82dcaba04c4a7c44f8e5b20101997
Georgaka S, Stabile G, Star K, Rozza G, Bluck MJ. A hybrid reduced order method for modelling turbulent heat transfer problems. Computers & Fluids [Internet]. 2020 ;208:104615. Available from: https://arxiv.org/abs/1906.08725
Zancanaro M, Mrosek M, Stabile G, Othmer C, Rozza G. Hybrid Neural Network Reduced Order Modelling for Turbulent Flows with Geometric Parameters. Fluids [Internet]. 2021 ;6:296. Available from: https://doi.org/10.3390/fluids6080296
Padula G, Romor F, Stabile G, Rozza G. Generative models for the deformation of industrial shapes with linear geometric constraints: Model order and parameter space reductions. . Computer Methods in Applied Mechanics and Engineering [Internet]. 2024 ;423. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0045782524000793
Stabile G, Rozza G. Finite volume POD-Galerkin stabilised reduced order methods for the parametrised incompressible Navier–Stokes equations. Computers and Fluids [Internet]. 2018 ;173:273-284. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85043366603&doi=10.1016%2fj.compfluid.2018.01.035&partnerID=40&md5=c15435ea3b632e55450da19ba2bb6125
Tezzele M, Demo N, Stabile G, Mola A, Rozza G. Enhancing CFD predictions in shape design problems by model and parameter space reduction. Advanced Modeling and Simulation in Engineering Sciences [Internet]. 2020 ;7(40). Available from: https://arxiv.org/abs/2001.05237
Stabile G, Zancanaro M, Rozza G. Efficient Geometrical parametrization for finite-volume based reduced order methods. International Journal for Numerical Methods in Engineering [Internet]. 2020 ;121:2655-2682. Available from: https://arxiv.org/abs/1901.06373

Pages

Sign in