Enhanced residual-free bubble method for convection-diffusion problems. In: Internat. J. Numer. Methods Fluids. Vol. 47. Internat. J. Numer. Methods Fluids. ; 2005. pp. 1307–1313. Available from: https://doi.org/10.1002/fld.859
. Enhanced RFB method. Numer. Math. [Internet]. 2005 ;101:273–308. Available from: https://doi.org/10.1007/s00211-005-0620-7
. The residual-free-bubble finite element method on anisotropic partitions. SIAM J. Numer. Anal. [Internet]. 2007 ;45:1654–1678. Available from: https://doi.org/10.1137/060658011
. Flux reconstruction and solution post-processing in mimetic finite difference methods. Comput. Methods Appl. Mech. Engrg. [Internet]. 2008 ;197:933–945. Available from: https://doi.org/10.1016/j.cma.2007.09.019
. Convergence analysis of the mimetic finite difference method for elliptic problems. SIAM J. Numer. Anal. [Internet]. 2009 ;47:2612–2637. Available from: https://doi.org/10.1137/080717560
. A spatial model of cellular molecular trafficking including active transport along microtubules. J. Theoret. Biol. [Internet]. 2010 ;267:614–625. Available from: https://doi.org/10.1016/j.jtbi.2010.08.017
. Convergence of the mimetic finite difference method for eigenvalue problems in mixed form. Comput. Methods Appl. Mech. Engrg. [Internet]. 2011 ;200:1150–1160. Available from: https://doi.org/10.1016/j.cma.2010.06.011
. Basic principles of virtual element methods. Math. Models Methods Appl. Sci. [Internet]. 2013 ;23:199–214. Available from: https://doi.org/10.1142/S0218202512500492
. Discontinuous Galerkin methods for mass transfer through semipermeable membranes. SIAM J. Numer. Anal. [Internet]. 2013 ;51:2911–2934. Available from: https://doi.org/10.1137/120890429
. Implementation of the continuous-discontinuous Galerkin finite element method. In: Numerical mathematics and advanced applications 2011. Numerical mathematics and advanced applications 2011. Springer, Heidelberg; 2013. pp. 315–322.
. On the stability of continuous-discontinuous Galerkin methods for advection-diffusion-reaction problems. J. Sci. Comput. [Internet]. 2013 ;57:313–330. Available from: https://doi.org/10.1007/s10915-013-9707-y
. Adaptive discontinuous Galerkin methods for nonstationary convection-diffusion problems. IMA J. Numer. Anal. [Internet]. 2014 ;34:1578–1597. Available from: https://doi.org/10.1093/imanum/drt052
. $hp$-version discontinuous Galerkin methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. [Internet]. 2014 ;24:2009–2041. Available from: https://doi.org/10.1142/S0218202514500146
. On local super-penalization of interior penalty discontinuous Galerkin methods. Int. J. Numer. Anal. Model. 2014 ;11:478–495.
. Hourglass stabilization and the virtual element method. International Journal for Numerical Methods in Engineering [Internet]. 2015 ;102:404-436. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.4854
. Hourglass stabilization and the virtual element method. Internat. J. Numer. Methods Engrg. [Internet]. 2015 ;102:404–436. Available from: https://doi.org/10.1002/nme.4854
. Adaptivity and blow-up detection for nonlinear evolution problems. SIAM J. Sci. Comput. [Internet]. 2016 ;38:A3833–A3856. Available from: https://doi.org/10.1137/16M106073X
. Discontinuous Galerkin methods for fast reactive mass transfer through semi-permeable membranes. Appl. Numer. Math. [Internet]. 2016 ;104:3–14. Available from: https://doi.org/10.1016/j.apnum.2014.06.007
. $hp$-version discontinuous Galerkin methods for advection-diffusion-reaction problems on polytopic meshes. ESAIM Math. Model. Numer. Anal. [Internet]. 2016 ;50:699–725. Available from: https://doi.org/10.1051/m2an/2015059
. The nonconforming virtual element method for the Stokes equations. SIAM J. Numer. Anal. [Internet]. 2016 ;54:3411–3435. Available from: https://doi.org/10.1137/15M1049531
. Review of discontinuous Galerkin finite element methods for partial differential equations on complicated domains. In: Building bridges: connections and challenges in modern approaches to numerical partial differential equations. Vol. 114. Building bridges: connections and challenges in modern approaches to numerical partial differential equations. Springer, [Cham]; 2016. pp. 279–308.
. Conforming and nonconforming virtual element methods for elliptic problems. IMA J. Numer. Anal. [Internet]. 2017 ;37:1317–1354. Available from: https://doi.org/10.1093/imanum/drw036
. $hp$-version discontinuous Galerkin methods on polygonal and polyhedral meshes. Springer, Cham; 2017 p. viii+131.
. $hp$-version space-time discontinuous Galerkin methods for parabolic problems on prismatic meshes. SIAM J. Sci. Comput. [Internet]. 2017 ;39:A1251–A1279. Available from: https://doi.org/10.1137/16M1073285
. A posteriori error estimates for the virtual element method. Numer. Math. [Internet]. 2017 ;137:857–893. Available from: https://doi.org/10.1007/s00211-017-0891-9
.