A Data-Driven Partitioned Approach for the Resolution of Time-Dependent Optimal Control Problems with Dynamic Mode Decomposition. In: 13th International Conference on Spectral and High Order Methods, ICOSAHOM 2021. 13th International Conference on Spectral and High Order Methods, ICOSAHOM 2021. ; 2023.
. Kernel-based active subspaces with application to computational fluid dynamics parametric problems using discontinuous Galerkin method. International Journal for Numerical Methods in Engineering. 2022 ;123:6000-6027.
. ATHENA: Advanced Techniques for High dimensional parameter spaces to Enhance Numerical Analysis. Software Impacts. 2021 ;10:100133.
. On the comparison of LES data-driven reduced order approaches for hydroacoustic analysis. Computers & Fluids [Internet]. 2021 ;216:104819. Available from: https://www.sciencedirect.com/science/article/pii/S0045793020303893
. . . Hull Shape Design Optimization with Parameter Space and Model Reductions, and Self-Learning Mesh Morphing. Journal of Marine Science and Engineering [Internet]. 2021 ;9:185. Available from: https://www.mdpi.com/2077-1312/9/2/185
. A local approach to parameter space reduction for regression and classification tasks. arXiv preprint arXiv:2107.10867. 2021 .
. Multi-fidelity data fusion for the approximation of scalar functions with low intrinsic dimensionality through active subspaces. In: Proceedings in Applied Mathematics & Mechanics. Vol. 20. Proceedings in Applied Mathematics & Mechanics. Wiley Online Library; 2021.
. Multi-fidelity data fusion through parameter space reduction with applications to automotive engineering. arXiv preprint arXiv:2110.14396. 2021 .
. PyGeM: Python Geometrical Morphing. Software Impacts. 2021 ;7:100047.
. A supervised learning approach involving active subspaces for an efficient genetic algorithm in high-dimensional optimization problems. SIAM Journal on Scientific Computing [Internet]. 2021 ;43(3). Available from: https://arxiv.org/abs/2006.07282
. Advances in reduced order methods for parametric industrial problems in computational fluid dynamics. In: Proceedings of the 6th European Conference on Computational Mechanics: Solids, Structures and Coupled Problems, ECCM 2018 and 7th European Conference on Computational Fluid Dynamics, ECFD 2018. Proceedings of the 6th European Conference on Computational Mechanics: Solids, Structures and Coupled Problems, ECCM 2018 and 7th European Conference on Computational Fluid Dynamics, ECFD 2018. ; 2020. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075395686&partnerID=40&md5=fb0b1a3cfdfd35a104db9921bc9be675
. Basic ideas and tools for projection-based model reduction of parametric partial differential equations. In: Model Order Reduction, Volume 2 Snapshot-Based Methods and Algorithms. Model Order Reduction, Volume 2 Snapshot-Based Methods and Algorithms. Berlin, Boston: De Gruyter; 2020. pp. 1 - 47. Available from: https://www.degruyter.com/view/book/9783110671490/10.1515/9783110671490-001.xml
. Enhancing CFD predictions in shape design problems by model and parameter space reduction. Advanced Modeling and Simulation in Engineering Sciences [Internet]. 2020 ;7(40). Available from: https://arxiv.org/abs/2001.05237
. . Reduced order isogeometric analysis approach for pdes in parametrized domains. Lecture Notes in Computational Science and Engineering [Internet]. 2020 ;137:153-170. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089615035&doi=10.1007%2f978-3-030-48721-8_7&partnerID=40&md5=7b15836ae65fa28dcfe8733788d7730c
. BladeX: Python Blade Morphing. The Journal of Open Source Software. 2019 ;4:1203.
. A complete data-driven framework for the efficient solution of parametric shape design and optimisation in naval engineering problems. In: 8th International Conference on Computational Methods in Marine Engineering, MARINE 2019. 8th International Conference on Computational Methods in Marine Engineering, MARINE 2019. ; 2019. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075342565&partnerID=40&md5=d76b8a1290053e7a84fb8801c0e6bb3d
. A complete data-driven framework for the efficient solution of parametric shape design and optimisation in naval engineering problems. In: VIII International Conference on Computational Methods in Marine Engineering. VIII International Conference on Computational Methods in Marine Engineering. ; 2019. Available from: https://arxiv.org/abs/1905.05982
. Efficient reduction in shape parameter space dimension for ship propeller blade design. In: 8th International Conference on Computational Methods in Marine Engineering, MARINE 2019. 8th International Conference on Computational Methods in Marine Engineering, MARINE 2019. ; 2019. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075395143&partnerID=40&md5=b6aa0fcedc2f88e78c295d0f437824d0
. A non-intrusive approach for the reconstruction of POD modal coefficients through active subspaces. Comptes Rendus - Mecanique [Internet]. 2019 ;347:873-881. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075379471&doi=10.1016%2fj.crme.2019.11.012&partnerID=40&md5=dcb27af39dc14dc8c3a4a5f681f7d84b
. Shape optimization through proper orthogonal decomposition with interpolation and dynamic mode decomposition enhanced by active subspaces. In: 8th International Conference on Computational Methods in Marine Engineering, MARINE 2019. 8th International Conference on Computational Methods in Marine Engineering, MARINE 2019. ; 2019. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075390244&partnerID=40&md5=3e1f2e9a2539d34594caff13766c94b8
. Combined parameter and model reduction of cardiovascular problems by means of active subspaces and POD-Galerkin methods. In: Mathematical and Numerical Modeling of the Cardiovascular System and Applications. Mathematical and Numerical Modeling of the Cardiovascular System and Applications. Springer; 2018. pp. 185–207.
. Dimension reduction in heterogeneous parametric spaces with application to naval engineering shape design problems. Advanced Modeling and Simulation in Engineering Sciences. 2018 ;5:25.
.