Some remarks on a variational approach to Arnold's diffusion. Discrete Contin. Dynam. Systems [Internet]. 1996 ;2:307–314. Available from: https://doi.org/10.3934/dcds.1996.2.307
. Heteroclinic solutions for perturbed second order systems. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 1997 ;8:251–262.
. Homoclinics and complex dynamics in slowly oscillating systems. Discrete Contin. Dynam. Systems [Internet]. 1998 ;4:393–403. Available from: https://doi.org/10.3934/dcds.1998.4.393
. Variational construction of homoclinics and chaos in presence of a saddle-saddle equilibrium. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 1998 ;9:167–175.
. Homoclinics and chaotic behaviour for perturbed second order systems. Ann. Mat. Pura Appl. (4) [Internet]. 1999 ;176:323–378. Available from: https://doi.org/10.1007/BF02506001
. A functional analysis approach to Arnold diffusion. In: Symmetry and perturbation theory (Cala Gonone, 2001). Symmetry and perturbation theory (Cala Gonone, 2001). World Sci. Publ., River Edge, NJ; 2001. pp. 29–31. Available from: https://doi.org/10.1142/9789812794543_0004
. Fast Arnold diffusion in systems with three time scales. Discrete Contin. Dyn. Syst. [Internet]. 2002 ;8:795–811. Available from: https://doi.org/10.3934/dcds.2002.8.795
. A functional analysis approach to Arnold diffusion. Ann. Inst. H. Poincaré C Anal. Non Linéaire [Internet]. 2002 ;19:395–450. Available from: https://doi.org/10.1016/S0294-1449(01)00084-1
. Periodic solutions of nonlinear wave equations with general nonlinearities. Comm. Math. Phys. [Internet]. 2003 ;243:315–328. Available from: https://doi.org/10.1007/s00220-003-0972-8
. Multiplicity of periodic solutions of nonlinear wave equations. Nonlinear Anal. [Internet]. 2004 ;56:1011–1046. Available from: https://doi.org/10.1016/j.na.2003.11.001
. Periodic orbits close to elliptic tori and applications to the three-body problem. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5). 2004 ;3:87–138.
. Periodic solutions of Hamiltonian PDEs. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8). 2004 ;7:647–661.
. Quasi-periodic oscillations for wave equations under periodic forcing. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 2005 ;16:109–116.
. Quasi-periodic solutions of completely resonant forced wave equations. Comm. Partial Differential Equations [Internet]. 2006 ;31:959–985. Available from: https://doi.org/10.1080/03605300500358129
. Nonlinear oscillations of Hamiltonian PDEs. Birkhäuser Boston, Inc., Boston, MA; 2007 p. xiv+180.
. Nonlinear vibrations of completely resonant wave equations. In: Fixed point theory and its applications. Vol. 77. Fixed point theory and its applications. Polish Acad. Sci. Inst. Math., Warsaw; 2007. pp. 49–60. Available from: https://doi.org/10.4064/bc77-0-4
. On periodic elliptic equations with gradient dependence. Commun. Pure Appl. Anal. [Internet]. 2008 ;7:601–615. Available from: https://doi.org/10.3934/cpaa.2008.7.601
. Quasi-periodic solutions of nonlinear Schrödinger equations on $\Bbb T^d$. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. [Internet]. 2011 ;22:223–236. Available from: https://doi.org/10.4171/RLM/597
. Quasi-periodic solutions of PDEs. In: Séminaire Laurent Schwartz–-Équations aux dérivées partielles et applications. Année 2011–2012. Séminaire Laurent Schwartz–-Équations aux dérivées partielles et applications. Année 2011–2012. École Polytech., Palaiseau; 2013. p. Exp. No. XXX, 11.
. An abstract Nash-Moser theorem and quasi-periodic solutions for NLW and NLS on compact Lie groups and homogeneous manifolds. Comm. Math. Phys. [Internet]. 2015 ;334:1413–1454. Available from: https://doi.org/10.1007/s00220-014-2128-4
. A Nash-Moser approach to KAM theory. In: Hamiltonian partial differential equations and applications. Vol. 75. Hamiltonian partial differential equations and applications. Fields Inst. Res. Math. Sci., Toronto, ON; 2015. pp. 255–284. Available from: https://doi.org/10.1007/978-1-4939-2950-4_9
. KAM for autonomous quasi-linear perturbations of KdV. Ann. Inst. H. Poincaré C Anal. Non Linéaire [Internet]. 2016 ;33:1589–1638. Available from: https://doi.org/10.1016/j.anihpc.2015.07.003
. KAM for autonomous quasi-linear perturbations of mKdV. Boll. Unione Mat. Ital. [Internet]. 2016 ;9:143–188. Available from: https://doi.org/10.1007/s40574-016-0065-1
. KAM for PDEs. Boll. Unione Mat. Ital. [Internet]. 2016 ;9:115–142. Available from: https://doi.org/10.1007/s40574-016-0067-z
. Quasi-periodic water waves. J. Fixed Point Theory Appl. [Internet]. 2017 ;19:129–156. Available from: https://doi.org/10.1007/s11784-016-0375-z
.