Isomonodromy deformations at an irregular singularity with coalescing eigenvalues. Duke Math. J. [Internet]. 2019 ;168:967–1108. Available from: https://doi.org/10.1215/00127094-2018-0059
. Local moduli of semisimple Frobenius coalescent structures. SISSA; 2018. Available from: http://preprints.sissa.it/handle/1963/35304
. Correlation functions of the KdV hierarchy and applications to intersection numbers over $\overline\CalM_g,n$. Phys. D [Internet]. 2016 ;327:30–57. Available from: http://dx.doi.org/10.1016/j.physd.2016.04.008
. Simple Lie Algebras and Topological ODEs. Int. Math. Res. Not. 2016 ;2016.
. .
On an isomonodromy deformation equation without the Painlevé property. [Internet]. 2014 . Available from: http://hdl.handle.net/1963/6466
. Minimal Liouville gravity correlation numbers from Douglas string equation. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34588
. Classical double, R-operators, and negative flows of integrable hierarchies. Theoretical and Mathematical Physics. Volume 172, Issue 1, July 2012, Pages 911-931 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6468
. On the critical behavior in nonlinear evolutionary PDEs with small viscocity. Russian Journal of Mathematical Physics. Volume 19, Issue 4, December 2012, Pages 449-460 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6465
. On the genus two free energies for semisimple Frobenius manifolds. Russian Journal of Mathematical Physics. Volume 19, Issue 3, September 2012, Pages 273-298 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6464
. Infinite-dimensional Frobenius manifolds for 2 + 1 integrable systems. Matematische Annalen 349 (2011) 75-115 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/3584
. Linearly degenerate Hamiltonian PDEs and a new class of solutions to the WDVV associativity equations. Functional Analysis and Its Applications. Volume 45, Issue 4, December 2011, Pages 278-290 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/6430
. Numerical Study of breakup in generalized Korteweg-de Vries and Kawahara equations. SIAM J. Appl. Math. 71 (2011) 983-1008 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/4951
. Hamiltonian PDEs: deformations, integrability, solutions. Journal of Physics A: Mathematical and Theoretical. Volume 43, Issue 43, 29 October 2010, Article number 434002 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/6469
. Hamiltonian perturbations of hyperbolic PDEs: from classification results to the properties of solutions. In: New Trends in Mathematical Physics : Selected contributions of the XVth International Congress on Mathematical Physics, Springer Netherlands, 2009, pp. 231-276. New Trends in Mathematical Physics : Selected contributions of the XVth International Congress on Mathematical Physics, Springer Netherlands, 2009, pp. 231-276. SISSA; 2009. Available from: http://hdl.handle.net/1963/6470
. On universality of critical behaviour in the focusing nonlinear Schrödinger equation, elliptic umbilic catastrophe and the \\\\it tritronquée solution to the Painlevé-I equation. J. Nonlinear Sci. 19 (2009) 57-94 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/2525
. Frobenius Manifolds and Central Invariants for the Drinfeld - Sokolov Bihamiltonian Structures. Adv. Math. 219 (2008) 780-837 [Internet]. 2008 . Available from: http://hdl.handle.net/1963/2523
. Hamiltonian partial differential equations and Frobenius manifolds. Russian Mathematical Surveys. Volume 63, Issue 6, 2008, Pages 999-1010 [Internet]. 2008 . Available from: http://hdl.handle.net/1963/6471
. Canonical structure and symmetries of the Schlesinger equations. Comm. Math. Phys. 271 (2007) 289-373 [Internet]. 2007 . Available from: http://hdl.handle.net/1963/1997
. On the reductions and classical solutions of the Schlesinger equations. Differential equations and quantum groups, IRMA Lect. Math. Theor. Phys. 9 (2007) 157-187 [Internet]. 2007 . Available from: http://hdl.handle.net/1963/6472
. Extended affine Weyl groups and Frobenius manifolds -- II.; 2006. Available from: http://hdl.handle.net/1963/1787
. On Hamiltonian perturbations of hyperbolic systems of conservation laws I: quasitriviality of bihamiltonian perturbations. Comm. Pure Appl. Math. 59 (2006) 559-615 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2535
. On Hamiltonian perturbations of hyperbolic systems of conservation laws, II: universality of critical behaviour.; 2006. Available from: http://hdl.handle.net/1963/1786
. On universality of critical behaviour in Hamiltonian PDEs. In: Geometry, topology, and mathematical physics : S.P. Novikov\\\'s seminar : 2006-2007 / V.M. Buchstaber, I.M. Krichever, editors. - Providence, R.I. : American Mathematical Society, 2008. - pages : 59-109. Geometry, topology, and mathematical physics : S.P. Novikov\\\'s seminar : 2006-2007 / V.M. Buchstaber, I.M. Krichever, editors. - Providence, R.I. : American Mathematical Society, 2008. - pages : 59-109. American Mathematical Society; 2006. Available from: http://hdl.handle.net/1963/6491
.