Limits of Dirichlet problems in perforated domains: a new formulation. Rend. Istit. Mat. Univ. Trieste 26 (1994) 339-360 [Internet]. 1994 . Available from: http://hdl.handle.net/1963/3649
. A capacity method for the study of Dirichlet problems for elliptic systems in varying domains. Rend. Sem. Mat. Univ. Padova 96 (1996), 257--277 [Internet]. 1996 . Available from: http://hdl.handle.net/1963/989
. Some Problems in the Asymptotic Analysis of Partial Differential Equations in Perforated Domains. [Internet]. 1997 . Available from: http://hdl.handle.net/1963/5698
. A model for the quasi-static growth of a brittle fracture: existence and approximation results. Math. Models Methods Appl. Sci., 12 (2002), no. 12, 1773 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1571
. A model for the quasi-static growth of brittle fractures based on local minimization. Math.Models Methods Appl. Sci., 12 (2002) , p.1773-1800. [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1621
. A Model for the Quasi-Static Growth of Brittle Fractures: Existence and Approximation Results. Arch. Ration. Mech. Anal. 162 (2002) 101-135 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/3056
. A note on the integral representation of functionals in the space SBD(O). Rend. Mat. Appl. 23 (2003) 189-201 [Internet]. 2003 . Available from: http://hdl.handle.net/1963/3064
. Quasi-static evolution in brittle fracture: the case of bounded solutions. Quad. Mat. Dip. Mat. Seconda Univ. Napoli 14 (2004) 245-266 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/2229
. Quasistatic Crack Growth in Nonlinear Elasticity. Arch. Ration. Mech. Anal. 176 (2005) 165-225 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/2293
. An artificial viscosity approach to quasistatic crack growth.; 2006. Available from: http://hdl.handle.net/1963/1850
. On a notion of unilateral slope for the Mumford-Shah functional. NoDEA 13 (2007) 713-734 [Internet]. 2007 . Available from: http://hdl.handle.net/1963/2059
. Decomposition results for functions with bounded variation. Boll. Unione Mat. Ital. (9) 1 (2008) 497-505 [Internet]. 2008 . Available from: http://hdl.handle.net/1963/3535
. Quasistatic crack growth in elasto-plastic materials: the two-dimensional case. Arch. Ration. Mech. Anal. 196 (2010) 867-906 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/2964
. Energy release rate and stress intensity factor in antiplane elasticity. Journal de Mathematiques Pures et Appliquees 95 (2011) 565-584 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/3780
. A MODEL FOR CRACK PROPAGATION BASED ON VISCOUS APPROXIMATION. {MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES}. 2011 ;{21}:{2019-2047}.
. Quasistatic crack evolution for a cohesive zone model with different response to loading and unloading: a Young measures approach. ESAIM: COCV 17 (2011) 1-27 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/2355
. Some remarks on the viscous approximation of crack growth. Discrete Contin. Dyn. Syst. Ser. S [Internet]. 2013 ;6. Available from: http://hdl.handle.net/1963/4206
. Laplace equation in a domain with a rectilinear crack: higher order derivatives of the energy with respect to the crack length. [Internet]. 2014 . Available from: http://hdl.handle.net/1963/7271
. Quasi-static crack growth in hydraulic fracture. Nonlinear Analysis [Internet]. 2014 ;109(Nov):301-318. Available from: http://hdl.handle.net/20.500.11767/17350
. Rate-independent damage in thermo-viscoelastic materials with inertia. SISSA; 2014. Available from: http://urania.sissa.it/xmlui/handle/1963/7444
. Some remarks on a model for rate-independent damage in thermo-visco-elastodynamics. SISSA; 2014. Available from: http://urania.sissa.it/xmlui/handle/1963/7463
. A variational model for the quasi-static growth of fractional dimensional brittle fractures. [Internet]. 2014 . Available from: http://hdl.handle.net/1963/6983
. .
Fracture models for elasto-plastic materials as limits of gradient damage models coupled with plasticity: the antiplane case. Calculus of Variations and Partial Differential Equations [Internet]. 2016 ;55:45. Available from: https://doi.org/10.1007/s00526-016-0981-z
. Lower semicontinuity of a class of integral functionals on the space of functions of bounded deformation. Advances in Calculus of Variations. 2017 ;10:183–207.
.