Export 182 results:
Filters: First Letter Of Title is C [Clear All Filters]
Calculation of impulsively started incompressible viscous flows. Int. J. Numer. Meth. Fluids. 2004 ;46:877–902.
. The Calibration Method for Free Discontinuity Problems. European Congress of Mathematics. Volume I : Barcelona, July 10-14, 2000 / Carles Casacuberta .. [et al.], editors. , Boston : Birkhauser, 2001, p. 317-326. [Internet]. 2000 . Available from: http://hdl.handle.net/1963/1496
. The Calibration Method for Free-Discontinuity Problems on Vector-Valued Maps. J. Convex Anal. 9 (2002) 1-29 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/3049
. The calibration method for the Mumford-Shah functional. C. R. Acad. Sci. Paris Ser. I Math. 329 (1999), no. 3, 249-254 [Internet]. 1999 . Available from: http://hdl.handle.net/1963/1235
. The calibration method for the Mumford-Shah functional and free-discontinuity problems. Calc. Var. Partial Differential Equations 16 (2003) 299-333 [Internet]. 2003 . Available from: http://hdl.handle.net/1963/3051
. On a Camassa-Holm type equation with two dependent variables.; 2006. Available from: http://hdl.handle.net/1963/1721
. A Canonical Frame for Nonholonomic Rank Two Distributions of Maximal Class.; 2006. Available from: http://hdl.handle.net/1963/1712
. Canonical k-Minkowski Spacetime.; 2010. Available from: http://hdl.handle.net/1963/3863
. Canonical structure and symmetries of the Schlesinger equations. Comm. Math. Phys. 271 (2007) 289-373 [Internet]. 2007 . Available from: http://hdl.handle.net/1963/1997
. Canonical Surfaces and Hypersurfaces in Abelian Varieties.; 2018. Available from: https://arxiv.org/abs/1808.05302
. Cantor families of periodic solutions for completely resonant nonlinear wave equations. Duke Math. J. 134 (2006) 359-419 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2161
. Cantor families of periodic solutions for completely resonant wave equations. Frontiers of Mathematics in China. 2008 ;3:151-165.
. Cantor families of periodic solutions for wave equations via a variational principle. Advances in Mathematics. 2008 ;217:1671-1727.
. Cantor families of periodic solutions of wave equations with C k nonlinearities. Nonlinear Differential Equations and Applications. 2008 ;15:247-276.
. Capacity and Dirichlet problems in varying domains. [Internet]. 1995 . Available from: http://hdl.handle.net/1963/950
. A capacity method for the study of Dirichlet problems for elliptic systems in varying domains. Rend. Sem. Mat. Univ. Padova 96 (1996), 257--277 [Internet]. 1996 . Available from: http://hdl.handle.net/1963/989
. Capacity theory for monotone operators. Potential Anal. 7 (1997), no. 4, 765-803 [Internet]. 1997 . Available from: http://hdl.handle.net/1963/911
. A case study in vanishing viscosity. Discrete Cont. Dyn. Syst. 7 (2001) 449-476 [Internet]. 2001 . Available from: http://hdl.handle.net/1963/3091
. Categorial mirror symmetry for K3 surfaces. Comm. Math. Phys. 206 (1999) 265-272 [Internet]. 1999 . Available from: http://hdl.handle.net/1963/2887
. Cauchy biorthogonal polynomials. J. Approx. Theory [Internet]. 2010 ;162:832–867. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1016/j.jat.2009.09.008
. On the Cauchy problem for the wave equation on time-dependent domains. SISSA; 2018. Available from: http://preprints.sissa.it/handle/1963/35314
. On the Cauchy Problem for the Whitham Equations. [Internet]. 1998 . Available from: http://hdl.handle.net/1963/5555
. The Cauchy two–matrix model. Comm. Math. Phys. 2009 ;287:983–1014.
. Cauchy-Laguerre two-matrix model and the Meijer-G random point field. Comm. Math. Phys. [Internet]. 2014 ;326:111–144. Available from: http://dx.doi.org/10.1007/s00220-013-1833-8
. A center manifold technique for tracing viscous waves. Commun. Pure Appl. Anal. 1 (2002) 161-190 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/3075
.