Export 79 results:
Filters: First Letter Of Title is D [Clear All Filters]
Dynamics control by a time-varying feedback. Journal of Dynamical and Control Systems. Volume 16, Issue 2, April 2010, Pages :149-162 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/6461
. Derivation of a rod theory from lattice systems with interactions beyond nearest neighbours.; 2017. Available from: http://urania.sissa.it/xmlui/handle/1963/35269
. Dynamics of opinion forming in structurally balanced social networks. PloS one. 2012 ; 7(6):e38135 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6051
. The deal.II Library, Version 9.0. JOURNAL OF NUMERICAL MATHEMATICS [Internet]. 2018 . Available from: https://doi.org/10.1515/jnma-2018-0054
Differential equations with multiple solutions and nonlinear functional analysis. Equadiff 82 (Wurzburg, 1982), 10--37, Lecture Notes in Math., 1017, Springer, Berlin, 1983 [Internet]. 1982 . Available from: http://hdl.handle.net/1963/222
. Deformed Lorentz symmetry and relative locality in a curved/expanding spacetime. Phys. Rev. D 86 (2012) 124035. 2012 .
. Dirichlet problems for demicoercive functionals. Nonlinear anal. 10(1986), no.6, 603-613 [Internet]. 1986 . Available from: http://hdl.handle.net/1963/390
. The deal.II Library, Version 8.5. JOURNAL OF NUMERICAL MATHEMATICS [Internet]. 2017 ;25:137–145. Available from: https://www.dealii.org/deal85-preprint.pdf
. Degenerate KAM theory for partial differential equations. Journal of Differential Equations. 2011 ;250:3379-3397.
. The deal.II Library, Version 8.3. ARCHIVE OF NUMERICAL SOFTWARE [Internet]. 2016 ;4:1–11. Available from: http://nbn-resolving.de/urn:nbn:de:bsz:16-ans-231226
. The deal.II Library, Version 8.1. SISSA; 2013. Available from: http://hdl.handle.net/1963/7236
. The deal.II Library, Version 8.2. Archive of Numerical Software, vol. 3, n. 100, (2015), pages : 1-8 [Internet]. 2015 . Available from: http://urania.sissa.it/xmlui/handle/1963/34464
. The deal.II library, Version 8.4. JOURNAL OF NUMERICAL MATHEMATICS [Internet]. 2016 ;24:135–141. Available from: https://www.math.clemson.edu/ heister/preprints/deal84-preprint.pdf
. The decomposition of optimal transportation problems with convex cost. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/7475
. Detection of transcriptional triggers in the dynamics of microbial growth: application to the respiratory-versatile bacterium Shewanella oneidensis. Nucleic Acids Research, Volume 40, Issue 15, August 2012, Pages 7132-7149 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6506
. Drift in phase space: a new variational mechanism with optimal diffusion time. J. Math. Pures Appl. 82 (2003) 613-664 [Internet]. 2003 . Available from: http://hdl.handle.net/1963/3020
. Diffusion time and splitting of separatrices for nearly integrable. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl., 2000, 11, 235 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/1547
. A degeneration of two-phase solutions of the focusing nonlinear Schrödinger equation via Riemann-Hilbert problems. J. Math. Phys. [Internet]. 2015 ;56:061507, 17. Available from: http://dx.doi.org/10.1063/1.4922362
. The duality of spectral curves that arises in two-matrix models. Teoret. Mat. Fiz. 2003 ;134:32–45.
. Discriminant circle bundles over local models of Strebel graphs and Boutroux curves. Teoret. Mat. Fiz. [Internet]. 2018 ;197:163–207. Available from: https://doi.org/10.4213/tmf9513
. Differential systems for biorthogonal polynomials appearing in 2-matrix models and the associated Riemann-Hilbert problem. Comm. Math. Phys. 2003 ;243:193–240.
. The dependence on the monodromy data of the isomonodromic tau function. Comm. Math. Phys. [Internet]. 2010 ;294:539–579. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1007/s00220-009-0961-7
. Decomposing quantum fields on branes. Nuclear Phys. B. 2000 ;581:575–603.
. Darboux Transformations and Random Point Processes. IMRN. 2014 ;rnu122:56.
. Duality, biorthogonal polynomials and multi-matrix models. Comm. Math. Phys. 2002 ;229:73–120.
.