MENU

You are here

Publications

Export 14 results:
Filters: First Letter Of Title is K  [Clear All Filters]
Journal Article
Baldi P, Berti M, Montalto R. KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation. Mathematische Annalen. 2014 :1-66.
Baldi P, Berti M, Montalto R. KAM for quasi-linear KdV. C. R. Math. Acad. Sci. Paris [Internet]. 2014 ;352(7-8):603-607. Available from: http://urania.sissa.it/xmlui/handle/1963/35067
Berti M, Biasco L, Procesi M. KAM for Reversible Derivative Wave Equations. Arch. Ration. Mech. Anal. [Internet]. 2014 ;212(3):905-955. Available from: http://urania.sissa.it/xmlui/handle/1963/34646
Mazzocco M. Kam theorem for generic analytic perturbations of the Guler system. Z. Angew. Math. Phys. 48 (1997), no. 2, 193-219 [Internet]. 1997 . Available from: http://hdl.handle.net/1963/1038
Berti M, Biasco L, Procesi M. KAM theory for the Hamiltonian derivative wave equation. Annales Scientifiques de l'Ecole Normale Superieure. 2013 ;46:301-373.
Claeys T, Grava T. The KdV hierarchy: universality and a Painleve transcendent. International Mathematics Research Notices, vol. 22 (2012) , page 5063-5099 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6921
Dal Maso G, Defranceschi A. A Kellogg property for µ-capacities. Boll. Un. Mat. Ital. A (7) 2, 1988, no. 1, 127-135 [Internet]. 1988 . Available from: http://hdl.handle.net/1963/492
Coatleven J, Altafini C. A kinetic mechanism inducing oscillations in simple chemical reactions networks. Mathematical Biosciences and Engineering 7(2):301-312, 2010 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/2393
Bertola M, Cafasso M. The Kontsevich matrix integral: convergence to the Painlevé hierarchy and Stokes' phenomenon. Comm. Math. Phys [Internet]. 2017 ;DOI 10.1007/s00220-017-2856-3. Available from: http://arxiv.org/abs/1603.06420
Boscain U, Chambrion T, Gauthier J-P. On the K+P problem for a three-level quantum system: optimality implies resonance. J.Dynam. Control Systems 8 (2002),no.4, 547 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1601
Falqui G, Reina C, Zampa A. Krichever maps, Faà di Bruno polynomials, and cohomology in KP theory. Lett. Math. Phys. 42 (1997) 349-361 [Internet]. 1997 . Available from: http://hdl.handle.net/1963/3539

Sign in