MENU

You are here

Publications

Export 89 results:
Filters: First Letter Of Title is R  [Clear All Filters]
2020
Hess M, Quaini A, Rozza G. Reduced Basis Model Order Reduction for Navier-Stokes equations in domains with walls of varying curvature. International Journal of Computational Fluid Dynamics [Internet]. 2020 ;34:119-126. Available from: https://arxiv.org/abs/1901.03708
Karatzas EN, Stabile G, Atallah N, Scovazzi G, Rozza G. A Reduced Order Approach for the Embedded Shifted Boundary FEM and a Heat Exchange System on Parametrized Geometries. In: Fehr J, Haasdonk B IUTAM Symposium on Model Order Reduction of Coupled Systems, Stuttgart, Germany, May 22–25, 2018. IUTAM Symposium on Model Order Reduction of Coupled Systems, Stuttgart, Germany, May 22–25, 2018. Springer International Publishing; 2020. Available from: https://arxiv.org/abs/1807.07753
Strazzullo M, Zainib Z, Ballarin F, Rozza G. Reduced order methods for parametrized non-linear and time dependent optimal flow control problems, towards applications in biomedical and environmental sciences. In: ENUMATH2019 proceedings. ENUMATH2019 proceedings. Springer; 2020. Available from: https://arxiv.org/abs/1912.07886
Pichi F, Quaini A, Rozza G. A Reduced Order technique to study bifurcating phenomena: application to the Gross-Pitaevskii equation. [Internet]. 2020 . Available from: https://arxiv.org/abs/1907.07082
2019
Beltrán C, Kozhasov K. The Real Polynomial Eigenvalue Problem is Well Conditioned on the Average. Foundations of Computational Mathematics [Internet]. 2019 . Available from: https://doi.org/10.1007/s10208-019-09414-2
Karatzas EN, Stabile G, Nouveau L, Scovazzi G, Rozza G. A reduced basis approach for PDEs on parametrized geometries based on the shifted boundary finite element method and application to a Stokes flow. Computer Methods in Applied Mechanics and Engineering [Internet]. 2019 ;347:568–587. Available from: https://arxiv.org/abs/1807.07790
Pichi F, Rozza G. Reduced basis approaches for parametrized bifurcation problems held by non-linear Von Kármán equations. [Internet]. 2019 ;81:112–135. Available from: https://arxiv.org/abs/1804.02014
Feola R, Giuliani F, Montalto R, Procesi M. Reducibility of first order linear operators on tori via Moser's theorem. Journal of Functional Analysis [Internet]. 2019 ;276:932 - 970. Available from: http://www.sciencedirect.com/science/article/pii/S0022123618303793
Bellettini G, Elshorbagy A, Paolini M, Scala R. On the relaxed area of the graph of discontinuous maps from the plane to the plane taking three values with no symmetry assumptions. Annali di Matematica Pura ed Applicata (1923 -) [Internet]. 2019 . Available from: https://doi.org/10.1007/s10231-019-00887-0
2017
Breiding P, Kozhasov K, Lerario A. Random spectrahedra.; 2017.
Riccobelli D, Ciarletta P. Rayleigh–Taylor instability in soft elastic layers. Phil. Trans. R. Soc. A. 2017 ;375.
Narain KS, Piazzalunga N, Tanzini A. Real topological string amplitudes. Journal of High Energy Physics [Internet]. 2017 ;2017:80. Available from: https://doi.org/10.1007/JHEP03(2017)080
Chen P, Quarteroni A, Rozza G. Reduced Basis Methods for Uncertainty Quantification. SIAM/ASA Journal on Uncertainty Quantification. 2017 ;5(1):869.
Lorenzi S, Cammi A, Luzzi L, Rozza G. A reduced order model for investigating the dynamics of the Gen-IV LFR coolant pool. Applied Mathematical Modelling [Internet]. 2017 ;46:263-284. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85020006623&doi=10.1016%2fj.apm.2017.01.066&partnerID=40&md5=f6e5715037eb0ef2ecb9ae03f373294f
Ballarin F, Rozza G, Maday Y. Reduced-order semi-implicit schemes for fluid-structure interaction problems. In: Benner P, Ohlberger M, Patera A, Rozza G, Urban K Model Reduction of Parametrized Systems. Model Reduction of Parametrized Systems. Springer International Publishing; 2017. pp. 149–167.
Marconi E. Regularity estimates for scalar conservation laws in one space dimension.; 2017. Available from: http://preprints.sissa.it/handle/1963/35291
Olgiati A. Remarks on the Derivation of Gross-Pitaevskii Equation with Magnetic Laplacian. In: Michelangeli A, Dell'Antonio G Advances in Quantum Mechanics: Contemporary Trends and Open Problems. Advances in Quantum Mechanics: Contemporary Trends and Open Problems. Cham: Springer International Publishing; 2017. pp. 257–266. Available from: https://doi.org/10.1007/978-3-319-58904-6_15

Pages

Sign in