MENU

You are here

Publications

Export 259 results:
Filters: First Letter Of Title is S  [Clear All Filters]
2024
Lerario A, Rizzi L, Tiberio D. Sard properties for polynomial maps in infinite dimension. [Internet]. 2024 . Available from: https://arxiv.org/abs/2407.02296
Zancanaro M, Ngan VEric Brice, Stabile G, Rozza G. A segregated reduced order model of a pressure-based solver for turbulent compressible flows.; 2024.
Carneiro E, Ismoilov T, Ramos APedro. Sign uncertainty and de Branges spaces. [Internet]. 2024 . Available from: https://arxiv.org/abs/2408.01186
Bardone L, Goldt S. Sliding Down the Stairs: How Correlated Latent Variables Accelerate Learning with Neural Networks. In: Forty-first International Conference on Machine Learning. Forty-first International Conference on Machine Learning. ; 2024. Available from: https://openreview.net/forum?id=9iGdh0wAgB
Gigli N, Vincini S. Stability of the heat flow under convergence in concentration and consequences. 2024 .
Bakhshaei K, Salavatidezfouli S, Stabile G, Rozza G. Stochastic Parameter Prediction in Cardiovascular Problems. arXiv preprint arXiv:2411.18089. 2024 .
Berti M, Maspero A, Ventura P. Stokes waves at the critical depth are modulationally unstable. Comm. Math. Phys. [Internet]. 2024 ;405:Paper No. 56, 67. Available from: https://doi.org/10.1007/s00220-023-04928-x
2021
Gigli N, Tamanini L. Second order differentiation formula on RCD∗(K;N) spaces. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY [Internet]. 2021 ;23:1727–1795. Available from: https://arxiv.org/abs/1802.02463
De Philippis G, Marini M, Mukoseeva E. The sharp quantitative isocapacitary inequality. Revista Matematica Iberoamericana [Internet]. 2021 ;37(6):2191 - 2228. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85104691573&doi=10.4171%2frmi%2f1259&partnerID=40&md5=5f88bc37b87a9eea7a502ea63523ff57
Mukoseeva E. The sharp quantitative isocapacitary inequality (the case of p-capacity). Advances in Calculus of Variations [Internet]. 2021 . Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85106363307&doi=10.1515%2facv-2020-0106&partnerID=40&md5=26dbcad781b68c1d873512e272f0e7f4
Giani S, Grubisic L, Heltai L, Mulita O. Smoothed-adaptive perturbed inverse iteration for elliptic eigenvalue problems. Computational Methods in Applied Mathematics. 2021 ;21:385-405.
Saracco G. A sufficient criterion to determine planar self-Cheeger sets. J. Convex Anal. [Internet]. 2021 ;28(3):951--958. Available from: https://www.heldermann.de/JCA/JCA28/JCA283/jca28055.htm
Demo N, Tezzele M, Rozza G. A supervised learning approach involving active subspaces for an efficient genetic algorithm in high-dimensional optimization problems. SIAM Journal on Scientific Computing [Internet]. 2021 ;43(3). Available from: https://arxiv.org/abs/2006.07282
2020
Perotto S, Rozza G. Special Issue on Reduced Order Models in CFD. International Journal of Computational Fluid Dynamics [Internet]. 2020 ;34:91-92. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084258805&doi=10.1080%2f10618562.2020.1756497&partnerID=40&md5=d9316aad9ba95f244e07379318ebbcba
Hess MW, Quaini A, Rozza G. A spectral element reduced basis method for navier–stokes equations with geometric variations. Lecture Notes in Computational Science and Engineering. 2020 ;134:561-571.
Ali S, Ballarin F, Rozza G. Stabilized reduced basis methods for parametrized steady Stokes and Navier–Stokes equations. Computers & Mathematics with Applications [Internet]. 2020 ;80(11):2399-2416. Available from: https://www.sciencedirect.com/science/article/pii/S0898122120301231
Ali S, Ballarin F, Rozza G. Stabilized reduced basis methods for parametrized steady Stokes and Navier–Stokes equations. Computers and Mathematics with Applications [Internet]. 2020 ;80:2399-2416. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083340115&doi=10.1016%2fj.camwa.2020.03.019&partnerID=40&md5=7ace96eee080701acb04d8155008dd7d
Bogomolov F, Lukzen E. Stable vector bundles on the families of curves. 2020 .
Riccobelli D, Bevilacqua G. Surface tension controls the onset of gyrification in brain organoids. Journal of the Mechanics and Physics of Solids [Internet]. 2020 ;134:103745. Available from: http://www.sciencedirect.com/science/article/pii/S0022509619304065
2019
Lučić D, Pasqualetto E. The Serre–Swan theorem for normed modules. Rendiconti del Circolo Matematico di Palermo Series 2 [Internet]. 2019 ;68:385–404. Available from: https://doi.org/10.1007/s12215-018-0366-6

Pages

Sign in