MENU

You are here

Publications

Export 6 results:
Filters: Author is Federico Pichi  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
P
Pichi F, Quaini A, Rozza G. A Reduced Order technique to study bifurcating phenomena: application to the Gross-Pitaevskii equation. SIAM Journal on Scientific Computing [Internet]. 2020 . Available from: https://arxiv.org/abs/1907.07082
Pichi F, Rozza G. Reduced basis approaches for parametrized bifurcation problems held by non-linear Von Kármán equations. [Internet]. 2019 ;81:112–135. Available from: https://arxiv.org/abs/1804.02014
Pichi F, Quaini A, Rozza G. A reduced order modeling technique to study bifurcating phenomena: Application to the gross-pitaevskii equation. SIAM Journal on Scientific Computing [Internet]. 2020 . Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096768803&doi=10.1137%2f20M1313106&partnerID=40&md5=47d6012d10854c2f9a04b9737f870592
Pichi F, Rozza G. Reduced Basis Approaches for Parametrized Bifurcation Problems held by Non-linear Von Kármán Equations. Journal of Scientific Computing [Internet]. 2019 ;81:112-135. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068973907&doi=10.1007%2fs10915-019-01003-3&partnerID=40&md5=a09af83ce45183d6965cdb79d87a919b
Pichi F, Strazzullo M, Ballarin F, Rozza G. Driving bifurcating parametrized nonlinear PDEs by optimal control strategies: application to Navier-Stokes equations with model order reduction. 2020 .
Pichi F, Ballarin F, Rozza G, Hesthaven JS. An artificial neural network approach to bifurcating phenomena in computational fluid dynamics. 2021 .

Sign in