Sobolev quasi-periodic solutions of multidimensional wave equations with a multiplicative potential. Nonlinearity. 2012 ;25:2579-2613.
. Existence and stability of quasi-periodic solutions for derivative wave equations. Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica e Applicazioni. 2013 ;24:199-214.
. KAM theory for the Hamiltonian derivative wave equation. Annales Scientifiques de l'Ecole Normale Superieure. 2013 ;46:301-373.
. A note on KAM theory for quasi-linear and fully nonlinear forced KdV. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 24 (2013), no. 3: 437–450. 2013 .
. Quasi-periodic solutions with Sobolev regularity of NLS on Td with a multiplicative potential. Journal of the European Mathematical Society. 2013 ;15:229-286.
. KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation. Mathematische Annalen. 2014 :1-66.
. KAM for quasi-linear KdV. C. R. Math. Acad. Sci. Paris [Internet]. 2014 ;352(7-8):603-607. Available from: http://urania.sissa.it/xmlui/handle/1963/35067
. KAM for Reversible Derivative Wave Equations. Arch. Ration. Mech. Anal. [Internet]. 2014 ;212(3):905-955. Available from: http://urania.sissa.it/xmlui/handle/1963/34646
. Quasi-periodic solutions of nonlinear wave equations on the $d$-dimensional torus. EMS Publishing House, Berlin; 2020 p. xv+358.
. Local well posedness of the Euler-Korteweg equations on {$\Bbb T^d$}. Journal of Dynamics and Differential Equations [Internet]. 2021 ;33(3):1475 - 1513. Available from: https://doi.org/10.1007/s10884-020-09927-3
. Quadratic life span of periodic gravity-capillary water waves. Water Waves [Internet]. 2021 ;3:85–115. Available from: https://doi.org/10.1007/s42286-020-00036-8
. Traveling quasi-periodic water waves with constant vorticity. Arch. Ration. Mech. Anal. [Internet]. 2021 ;240:99–202. Available from: https://doi.org/10.1007/s00205-021-01607-w
. On the analyticity of the Dirichlet-Neumann operator and Stokes waves. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. [Internet]. 2022 ;33:611–650. Available from: https://doi.org/10.4171/rlm/983
. Benjamin-Feir instability of Stokes waves. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. [Internet]. 2022 ;33:399–412. Available from: https://doi.org/10.4171/rlm/975
. Full description of Benjamin-Feir instability of Stokes waves in deep water. Invent. Math. [Internet]. 2022 ;230:651–711. Available from: https://doi.org/10.1007/s00222-022-01130-z
. Hamiltonian Birkhoff normal form for gravity-capillary water waves with constant vorticity: almost global existence. Annals of PDEs [Internet]. 2022 . Available from: https://arxiv.org/abs/2212.12255
. Benjamin-Feir instability of Stokes waves in finite depth. Arch. Ration. Mech. Anal. [Internet]. 2023 ;247:Paper No. 91, 54. Available from: https://doi.org/10.1007/s00205-023-01916-2
. Birkhoff normal form and long time existence for periodic gravity water waves. Comm. Pure Appl. Math. [Internet]. 2023 ;76:1416–1494. Available from: https://doi.org/10.1002/cpa.22041
. Hamiltonian paradifferential Birkhoff normal form for water waves. Regul. Chaotic Dyn. [Internet]. 2023 ;28:543–560. Available from: https://doi.org/10.1134/S1560354723040032
. Paralinearization and extended lifespan for solutions of the $ α$-SQG sharp front equation. [Internet]. 2023 . Available from: https://arxiv.org/abs/2310.15963
. Time quasi-periodic vortex patches of Euler equation in the plane. Invent. Math. [Internet]. 2023 ;233:1279–1391. Available from: https://doi.org/10.1007/s00222-023-01195-4
. . .
KAM for Vortex Patches. Regular and Chaotic Dynamics [Internet]. 2024 ;29(4):654 - 676. Available from: https://doi.org/10.1134/S1560354724540013
. Pure gravity traveling quasi-periodic water waves with constant vorticity. Comm. Pure Appl. Math. [Internet]. 2024 ;77:990–1064. Available from: https://doi.org/10.1002/cpa.22143
.