KAM theory for the Hamiltonian derivative wave equation. Annales Scientifiques de l'Ecole Normale Superieure. 2013 ;46:301-373.
. A note on KAM theory for quasi-linear and fully nonlinear forced KdV. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 24 (2013), no. 3: 437–450. 2013 .
. Quasi-periodic solutions with Sobolev regularity of NLS on Td with a multiplicative potential. Journal of the European Mathematical Society. 2013 ;15:229-286.
. Sobolev quasi-periodic solutions of multidimensional wave equations with a multiplicative potential. Nonlinearity. 2012 ;25:2579-2613.
. Branching of Cantor Manifolds of Elliptic Tori and Applications to PDEs. Communications in Mathematical Physics. 2011 ;305:741-796.
. Degenerate KAM theory for partial differential equations. Journal of Differential Equations. 2011 ;250:3379-3397.
. Nonlinear wave and Schrödinger equations on compact Lie groups and homogeneous spaces. Duke Mathematical Journal. 2011 ;159(3).
. An abstract Nash-Moser theorem with parameters and applications to PDEs. Annales de l'Institut Henri Poincare. Annales: Analyse Non Lineaire/Nonlinear Analysis. 2010 ;27:377-399.
. Sobolev periodic solutions of nonlinear wave equations in higher spatial dimensions. Archive for Rational Mechanics and Analysis. 2010 ;195:609-642.
. Cantor families of periodic solutions for completely resonant wave equations. Frontiers of Mathematics in China. 2008 ;3:151-165.
. Cantor families of periodic solutions for wave equations via a variational principle. Advances in Mathematics. 2008 ;217:1671-1727.
. Cantor families of periodic solutions of wave equations with C k nonlinearities. Nonlinear Differential Equations and Applications. 2008 ;15:247-276.
. Forced Vibrations of a Nonhomogeneous String. SIAM J. Math. Anal. 40 (2008) 382-412 [Internet]. 2008 . Available from: http://hdl.handle.net/1963/2643
. Variational methods for Hamiltonian PDEs. NATO Science for Peace and Security Series B: Physics and Biophysics. 2008 :391-420.
. A Birkhoff-Lewis-Type Theorem for Some Hamiltonian PDEs. SIAM J. Math. Anal. 37 (2006) 83-102 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2159
. Cantor families of periodic solutions for completely resonant nonlinear wave equations. Duke Math. J. 134 (2006) 359-419 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2161
. Forced vibrations of wave equations with non-monotone nonlinearities. Ann. Inst. H. Poincaré Anal. Non Linéaire 23 (2006) 439-474 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2160
. Periodic solutions of nonlinear wave equations for asymptotically full measure sets of frequencies. Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica e Applicazioni. 2006 ;17:257-277.
. Periodic solutions of nonlinear wave equations with non-monotone forcing terms. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 16 (2005), no. 2, 117-124 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/4581
. Bifurcation of free vibrations for completely resonant wave equations. Boll. Unione Mat. Ital. Sez. B 7 (2004) 519-528 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/2245
. Soluzioni periodiche di PDEs Hamiltoniane. Bollettino dell\\\'Unione Matematica Italiana Serie 8 7-B (2004), p. 647-661 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/4582
. Drift in phase space: a new variational mechanism with optimal diffusion time. J. Math. Pures Appl. 82 (2003) 613-664 [Internet]. 2003 . Available from: http://hdl.handle.net/1963/3020
. Arnold diffusion: a functional analysis approach. Pr. Inst. Mat. Nats. Akad. Nauk Ukr. Mat. Zastos., 43, Part 1, 2, Natsīonal. Akad. Nauk Ukraïni, Īnst. Mat., Kiev, 2002. 2002 .
. Chaotic dynamics for perturbations of infinite-dimensional Hamiltonian systems. Nonlinear Anal. 48 (2002) 481-504 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1279
. An optimal fast-diffusion variational method for non isochronous system. [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1579
.