Massless scalar field in a two-dimensional de Sitter universe. In: Rigorous quantum field theory. Vol. 251. Rigorous quantum field theory. Basel: Birkhäuser; 2007. pp. 27–38.
. Harish-Chandra integrals as nilpotent integrals. Int. Math. Res. Not. IMRN. 2008 :Art. ID rnn062, 15.
. The Cauchy two–matrix model. Comm. Math. Phys. 2009 ;287:983–1014.
. Commuting difference operators, spinor bundles and the asymptotics of orthogonal polynomials with respect to varying complex weights. Adv. Math. 2009 ;220:154–218.
. Cubic string boundary value problems and Cauchy biorthogonal polynomials. J. Phys. A [Internet]. 2009 ;42:454006, 13. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1088/1751-8113/42/45/454006
. First colonization of a spectral outpost in random matrix theory. Constr. Approx. [Internet]. 2009 ;30:225–263. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1007/s00365-008-9026-y
. Mesoscopic colonization in a spectral band. J. Phys. A [Internet]. 2009 ;42:415204, 17. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1088/1751-8113/42/41/415204
. Moment determinants as isomonodromic tau functions. Nonlinearity. 2009 ;22:29–50.
. The partition function of the two-matrix model as an isomonodromic τ function. J. Math. Phys. [Internet]. 2009 ;50:013529, 17. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1063/1.3054865
. Regularity of a vector potential problem and its spectral curve. J. Approx. Theory [Internet]. 2009 ;161:353–370. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1016/j.jat.2008.10.010
. Topological expansion for the Cauchy two-matrix model. J. Phys. A [Internet]. 2009 ;42:335201, 28. Available from: http://dx.doi.org/10.1088/1751-8113/42/33/335201
. Cauchy biorthogonal polynomials. J. Approx. Theory [Internet]. 2010 ;162:832–867. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1016/j.jat.2009.09.008
. The dependence on the monodromy data of the isomonodromic tau function. Comm. Math. Phys. [Internet]. 2010 ;294:539–579. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1007/s00220-009-0961-7
. First colonization of a hard-edge in random matrix theory. Constr. Approx. [Internet]. 2010 ;31:231–257. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1007/s00365-009-9052-4
. Universality in the profile of the semiclassical limit solutions to the focusing nonlinear Schrödinger equation at the first breaking curve. Int. Math. Res. Not. IMRN [Internet]. 2010 :2119–2167. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1093/imrn/rnp196
. Boutroux curves with external field: equilibrium measures without a variational problem. Anal. Math. Phys. [Internet]. 2011 ;1:167–211. Available from: http://dx.doi.org/10.1007/s13324-011-0012-3
. The Transition between the Gap Probabilities from the Pearcey to the Airy Process–a Riemann-Hilbert Approach. International Mathematics Research Notices. 2011 ;doi: 10.1093/imrn/rnr066:1-50.
. Fredholm determinants and pole-free solutions to the noncommutative Painlevé II equation. Comm. Math. Phys. [Internet]. 2012 ;309:793–833. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1007/s00220-011-1383-x
. On the location of poles for the Ablowitz-Segur family of solutions to the second Painlevé equation. Nonlinearity [Internet]. 2012 ;25:1179–1185. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1088/0951-7715/25/4/1179
. Riemann–Hilbert approach to multi-time processes: The Airy and the Pearcey cases. Physica D: Nonlinear Phenomena [Internet]. 2012 ;241:2237 - 2245. Available from: http://www.sciencedirect.com/science/article/pii/S0167278912000115
. Spectra of random Hermitian matrices with a small-rank external source: the critical and near-critical regimes. J. Stat. Phys. [Internet]. 2012 ;146:475–518. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1007/s10955-011-0409-2
. The gap probabilities of the tacnode, Pearcey and Airy point processes, their mutual relationship and evaluation. Random Matrices: Theory and Applications [Internet]. 2013 ;02:1350003. Available from: http://www.worldscientific.com/doi/abs/10.1142/S2010326313500032
. Inversion formulae for the $\romancosh$-weighted Hilbert transform. Proc. Amer. Math. Soc. [Internet]. 2013 ;141:2703–2718. Available from: http://dx.doi.org/10.1090/S0002-9939-2013-11642-4
. Spectra of random Hermitian matrices with a small-rank external source: the supercritical and subcritical regimes. J. Stat. Phys. [Internet]. 2013 ;153:654–697. Available from: http://dx.doi.org/10.1007/s10955-013-0845-2
. Strong asymptotics for Cauchy biorthogonal polynomials with application to the Cauchy two-matrix model. J. Math. Phys. 2013 ;54:043517, 25.
.