MENU

You are here

Publications

Export 135 results:
Filters: Author is Gianluigi Rozza  [Clear All Filters]
2020
Hijazi S, Stabile G, Mola A, Rozza G. Non-intrusive Polynomial Chaos Method Applied to Full-Order and Reduced Problems in Computational Fluid Dynamics: A Comparison and Perspectives. In: Quantification of Uncertainty: Improving Efficiency and Technology: QUIET selected contributions. Quantification of Uncertainty: Improving Efficiency and Technology: QUIET selected contributions. Cham: Springer International Publishing; 2020. pp. 217–240. Available from: https://doi.org/10.1007/978-3-030-48721-8_10
Strazzullo M, Ballarin F, Rozza G. POD-Galerkin Model Order Reduction for Parametrized Nonlinear Time Dependent Optimal Flow Control: an Application to Shallow Water Equations. 2020 .
Strazzullo M, Ballarin F, Rozza G. POD–Galerkin Model Order Reduction for Parametrized Time Dependent Linear Quadratic Optimal Control Problems in Saddle Point Formulation. Journal of Scientific Computing. 2020 ;83.
Busto S, Stabile G, Rozza G, Vázquez-Cendón ME. POD–Galerkin reduced order methods for combined Navier–Stokes transport equations based on a hybrid FV-FE solver. Computers and Mathematics with Applications [Internet]. 2020 ;79:256-273. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068068567&doi=10.1016%2fj.camwa.2019.06.026&partnerID=40&md5=a8dcce1b53b8ee872d174bbc4c20caa3
Karatzas EN, Ballarin F, Rozza G. Projection-based reduced order models for a cut finite element method in parametrized domains. Computers and Mathematics with Applications [Internet]. 2020 ;79:833-851. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070900852&doi=10.1016%2fj.camwa.2019.08.003&partnerID=40&md5=2d222ab9c7832955d155655d3c93e1b1
Hess M, Quaini A, Rozza G. Reduced Basis Model Order Reduction for Navier-Stokes equations in domains with walls of varying curvature. International Journal of Computational Fluid Dynamics [Internet]. 2020 ;34:119-126. Available from: https://arxiv.org/abs/1901.03708
Hess M, Quaini A, Rozza G. Reduced basis model order reduction for Navier–Stokes equations in domains with walls of varying curvature. International Journal of Computational Fluid Dynamics [Internet]. 2020 ;34:119-126. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85085233294&doi=10.1080%2f10618562.2019.1645328&partnerID=40&md5=e2ed8f24c66376cdc8b5485aa400efb0
Karatzas EN, Stabile G, Atallah N, Scovazzi G, Rozza G. A Reduced Order Approach for the Embedded Shifted Boundary FEM and a Heat Exchange System on Parametrized Geometries. In: Fehr J, Haasdonk B IUTAM Symposium on Model Order Reduction of Coupled Systems, Stuttgart, Germany, May 22–25, 2018. IUTAM Symposium on Model Order Reduction of Coupled Systems, Stuttgart, Germany, May 22–25, 2018. Springer International Publishing; 2020. Available from: https://arxiv.org/abs/1807.07753
Garotta F, Demo N, Tezzele M, Carraturo M, Reali A, Rozza G. Reduced order isogeometric analysis approach for pdes in parametrized domains. Lecture Notes in Computational Science and Engineering [Internet]. 2020 ;137:153-170. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089615035&doi=10.1007%2f978-3-030-48721-8_7&partnerID=40&md5=7b15836ae65fa28dcfe8733788d7730c
Zainib Z, Ballarin F, Fremes SE, Triverio P, Jiménez-Juan L, Rozza G. Reduced order methods for parametric optimal flow control in coronary bypass grafts, toward patient-specific data assimilation. International Journal for Numerical Methods in Biomedical Engineering [Internet]. 2020 . Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087646515&doi=10.1002%2fcnm.3367&partnerID=40&md5=3713db6d2b8f9d079b5534445621decf
Strazzullo M, Zainib Z, Ballarin F, Rozza G. Reduced order methods for parametrized non-linear and time dependent optimal flow control problems, towards applications in biomedical and environmental sciences. In: ENUMATH2019 proceedings. ENUMATH2019 proceedings. Springer; 2020. Available from: https://arxiv.org/abs/1912.07886
Pichi F, Quaini A, Rozza G. A reduced order modeling technique to study bifurcating phenomena: Application to the gross-pitaevskii equation. SIAM Journal on Scientific Computing [Internet]. 2020 . Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096768803&doi=10.1137%2f20M1313106&partnerID=40&md5=47d6012d10854c2f9a04b9737f870592
Pichi F, Quaini A, Rozza G. A Reduced Order technique to study bifurcating phenomena: application to the Gross-Pitaevskii equation. SIAM Journal on Scientific Computing [Internet]. 2020 . Available from: https://arxiv.org/abs/1907.07082
Karatzas EN, Stabile G, Nouveau L, Scovazzi G, Rozza G. A reduced-order shifted boundary method for parametrized incompressible Navier–Stokes equations. Computer Methods in Applied Mechanics and Engineering [Internet]. 2020 ;370. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087886522&doi=10.1016%2fj.cma.2020.113273&partnerID=40&md5=d864e4808190b682ecb1c8b27cda72d8
Perotto S, Rozza G. Special Issue on Reduced Order Models in CFD. International Journal of Computational Fluid Dynamics [Internet]. 2020 ;34:91-92. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084258805&doi=10.1080%2f10618562.2020.1756497&partnerID=40&md5=d9316aad9ba95f244e07379318ebbcba
Hess M, Quaini A, Rozza G. A spectral element reduced basis method for navier–stokes equations with geometric variations. Lecture Notes in Computational Science and Engineering. 2020 ;134:561-571.
Ali S, Ballarin F, Rozza G. Stabilized reduced basis methods for parametrized steady Stokes and Navier–Stokes equations. Computers and Mathematics with Applications [Internet]. 2020 ;80:2399-2416. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083340115&doi=10.1016%2fj.camwa.2020.03.019&partnerID=40&md5=7ace96eee080701acb04d8155008dd7d
2019
Demo N, Tezzele M, Mola A, Rozza G. A complete data-driven framework for the efficient solution of parametric shape design and optimisation in naval engineering problems. In: VIII International Conference on Computational Methods in Marine Engineering. VIII International Conference on Computational Methods in Marine Engineering. ; 2019. Available from: https://arxiv.org/abs/1905.05982
Demo N, Tezzele M, Mola A, Rozza G. A complete data-driven framework for the efficient solution of parametric shape design and optimisation in naval engineering problems. In: 8th International Conference on Computational Methods in Marine Engineering, MARINE 2019. 8th International Conference on Computational Methods in Marine Engineering, MARINE 2019. ; 2019. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075342565&partnerID=40&md5=d76b8a1290053e7a84fb8801c0e6bb3d
Shah NVasant, Hess M, Rozza G. Discontinuous Galerkin Model Order Reduction of Geometrically Parametrized Stokes Equation. [Internet]. 2019 . Available from: https://arxiv.org/abs/1912.09787
Mola A, Tezzele M, Gadalla M, Valdenazzi F, Grassi D, Padovan R, Rozza G. Efficient reduction in shape parameter space dimension for ship propeller blade design. In: 8th International Conference on Computational Methods in Marine Engineering, MARINE 2019. 8th International Conference on Computational Methods in Marine Engineering, MARINE 2019. ; 2019. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075395143&partnerID=40&md5=b6aa0fcedc2f88e78c295d0f437824d0
Girfoglio M, Quaini A, Rozza G. A Finite Volume approximation of the Navier-Stokes equations with nonlinear filtering stabilization. Computers & Fluids [Internet]. 2019 ;187:27-45. Available from: https://arxiv.org/abs/1901.05251
Girfoglio M, Quaini A, Rozza G. A Finite Volume approximation of the Navier-Stokes equations with nonlinear filtering stabilization. Computers and Fluids [Internet]. 2019 ;187:27-45. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065471890&doi=10.1016%2fj.compfluid.2019.05.001&partnerID=40&md5=c982371b5b5d4b5664a676902aaa60f4
Hess M, Alla A, Quaini A, Rozza G, Gunzburger M. A Localized Reduced-Order Modeling Approach for PDEs with Bifurcating Solutions. Computer Methods in Applied Mechanics and Engineering [Internet]. 2019 ;351:379-403. Available from: https://arxiv.org/abs/1807.08851
Hess M, Alla A, Quaini A, Rozza G, Gunzburger M. A localized reduced-order modeling approach for PDEs with bifurcating solutions. Computer Methods in Applied Mechanics and Engineering [Internet]. 2019 ;351:379-403. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064313505&doi=10.1016%2fj.cma.2019.03.050&partnerID=40&md5=8b095034b9e539995facc7ce7bafa9e9

Pages

Sign in