MENU

You are here

Publications

Export 51 results:
Filters: First Letter Of Title is Q  [Clear All Filters]
Journal Article
Lazzaroni G. Quasistatic crack growth in finite elasticity with Lipschitz data. {ANNALI DI MATEMATICA PURA ED APPLICATA}. 2011 ;{190}:{165-194}.
Dal Maso G, Lazzaroni G. Quasistatic crack growth in finite elasticity with non-interpenetration. Ann. Inst. H. Poincare Anal. Non Lineaire 27 (2010) 257-290 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/3397
Almi S, Dal Maso G, Toader R. Quasi-static crack growth in hydraulic fracture. Nonlinear Analysis [Internet]. 2014 ;109(Nov):301-318. Available from: http://hdl.handle.net/20.500.11767/17350
Dal Maso G, Francfort GA, Toader R. Quasistatic Crack Growth in Nonlinear Elasticity. Arch. Ration. Mech. Anal. 176 (2005) 165-225 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/2293
Dal Maso G, DeSimone A, Solombrino F. Quasistatic evolution for Cam-Clay plasticity: a weak formulation via viscoplastic regularization and time rescaling. Calculus of Variations and Partial Differential Equations 40 (2011) 125-181 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/3670
Dal Maso G, DeSimone A. Quasistatic evolution for Cam-Clay plasticity: examples of spatially homogeneous solutions. Math. Models Methods Appl. Sci. 19 (2009) 1643-1711 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/3395
Dal Maso G, DeSimone A, Solombrino F. Quasistatic evolution for Cam-Clay plasticity: properties of the viscosity solution. Calculus of variations and partial differential equations 44 (2012) 495-541 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/3900
Dal Maso G, Solombrino F. Quasistatic evolution for Cam-Clay plasticity: the spatially homogeneous case. Netw. Heterog. Media 5 (2010) 97-132 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/3671
Solombrino F. Quasistatic evolution for plasticity with softening: The spatially homogeneous case. Discrete & Continuous Dynamical Systems - A [Internet]. 2010 ;27:1189. Available from: http://aimsciences.org//article/id/4c2301d8-f553-493e-b672-b4f76a3ede2f
Dal Maso G, Francfort GA, Toader R. Quasi-static evolution in brittle fracture: the case of bounded solutions. Quad. Mat. Dip. Mat. Seconda Univ. Napoli 14 (2004) 245-266 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/2229
Babadjian J-F, Francfort GA, Mora MG. Quasistatic evolution in non-associative plasticity - the cap models. SIAM Journal on Mathematical Analysis 44, nr. 1 (2012) 245-292 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/4139
Dal Maso G, Scala R. Quasistatic Evolution in Perfect Plasticity as Limit of Dynamic Processes. Journal of Dynamics and Differential Equations [Internet]. 2014 ;26:915–954. Available from: https://doi.org/10.1007/s10884-014-9409-7
Davoli E, Mora MG. A quasistatic evolution model for perfectly plastic plates derived by Γ-convergence. Annales de l'Institut Henri Poincare (C) Non Linear Analysis [Internet]. 2013 ;30:615 - 660. Available from: http://www.sciencedirect.com/science/article/pii/S0294144912001035
Davoli E. Quasistatic evolution models for thin plates arising as low energy Γ-limits of finite plasticity. Mathematical Models and Methods in Applied Sciences [Internet]. 2014 ;24:2085-2153. Available from: https://doi.org/10.1142/S021820251450016X
Alberti G, DeSimone A. Quasistatic evolution of sessile drops and contact angle hysteresis. Arch. Rational Mech. Anal. 202 (2011) 295-348 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/4912
Dal Maso G, DeSimone A, Mora MG. Quasistatic evolution problems for linearly elastic-perfectly plastic materials. Arch. Ration. Mech. Anal. 180 (2006) 237-291 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2129
Solombrino F. Quasistatic evolution problems for nonhomogeneous elastic plastic materials. J. Convex Anal. 2009 ;16:89–119.
Dal Maso G, Demyanov A, DeSimone A. Quasistatic evolution problems for pressure-sensitive plastic materials. Milan J. Math. 75 (2007) 117-134 [Internet]. 2007 . Available from: http://hdl.handle.net/1963/1962
Lazzaroni G, Nardini L. On the Quasistatic Limit of Dynamic Evolutions for a Peeling Test in Dimension One. Journal of Nonlinear Science [Internet]. 2018 ;28:269–304. Available from: https://doi.org/10.1007/s00332-017-9407-0

Pages

Sign in