MENU

You are here

Publications

Export 51 results:
Filters: First Letter Of Title is Q  [Clear All Filters]
Journal Article
Lazzaroni G. Quasistatic crack growth in finite elasticity with Lipschitz data. {ANNALI DI MATEMATICA PURA ED APPLICATA}. 2011 ;{190}:{165-194}.
Dal Maso G, Toader R. Quasistatic crack growth in elasto-plastic materials: the two-dimensional case. Arch. Ration. Mech. Anal. 196 (2010) 867-906 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/2964
Crismale V, Lazzaroni G. Quasistatic crack growth based on viscous approximation: a model with branching and kinking. Nonlinear Differential Equations and Applications NoDEA [Internet]. 2017 ;24:7. Available from: https://doi.org/10.1007/s00030-016-0426-6
Cagnetti F, Toader R. Quasistatic crack evolution for a cohesive zone model with different response to loading and unloading: a Young measures approach. ESAIM: COCV 17 (2011) 1-27 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/2355
Berti M, Bolle P. Quasi-periodic solutions with Sobolev regularity of NLS on Td with a multiplicative potential. Journal of the European Mathematical Society. 2013 ;15:229-286.
Berti M, Procesi M. Quasi-periodic solutions of completely resonant forced wave equations. Comm. Partial Differential Equations 31 (2006) 959 - 985 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2234
Giuliani F. Quasi-periodic solutions for quasi-linear generalized KdV equations. Journal of Differential Equations [Internet]. 2017 ;262:5052 - 5132. Available from: http://www.sciencedirect.com/science/article/pii/S0022039617300487
Berti M, Procesi M. Quasi-periodic oscillations for wave equations under periodic forcing. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 16 (2005), no. 2, 109-116 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/4583
Cesana P, DeSimone A. Quasiconvex envelopes of energies for nematic elastomers in the small strain regime and applications. Journal of the Mechanics and Physics of Solids 59 (2011) 787-803 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/4065
Dabrowski L, Reina C. Quantum spin coverings and statistics. J. Phys. A 36 (2003), no. 13, 3829-3840 [Internet]. 2003 . Available from: http://hdl.handle.net/1963/1667
Correggi M, Morchio G. Quantum mechanics and stochastic mechanics for compatible observables at different times. Ann.Physics 296 (2002), no.2, 371 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1577
Bhowmick J, D'Andrea F, Dabrowski L. Quantum Isometries of the finite noncommutative geometry of the Standard Model. Commun. Math. Phys. 307:101-131, 2011 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/4906
Bahns D, Doplicher S, Fredenhagen K, Piacitelli G. Quantum Geometry on Quantum Spacetime: Distance, Area and Volume Operators. Commun. Math. Phys. 308 (2011) 567-589 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/5203
Bhowmick J, D'Andrea F, Das BKrishna, Dabrowski L. Quantum gauge symmetries in noncommutative geometry. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34897
Matassa M. Quantum dimension and quantum projective spaces. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34764
Marigo A, Piccoli B, Bicchi A. Quantized control systems and discrete nonholonomy. Lagrangian and Hamiltonian Methods for Nonlinear Control : a proc. volume from the IFAC Workshop. Princeton, New Jersey, 16-18 March 2000 / ed. by N.E. Leonard, R. Ortega. - Oxford : Pergamon, 2000 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/1502
Falqui G, Musso F. Quantisation of bending flows. Czechoslovak Journal of Physics 56 (2006), n. 10-11, 1143-1148 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2537
Bianchini S, Modena S. Quadratic interaction functional for systems of conservation laws: a case study. Bulletin of the Institute of Mathematics of Academia Sinica (New Series) [Internet]. 2014 ;9:487-546. Available from: https://w3.math.sinica.edu.tw/bulletin_ns/20143/2014308.pdf
Bianchini S, Modena S. Quadratic Interaction Functional for General Systems of Conservation Laws. Communications in Mathematical Physics. 2015 ;338:1075–1152.
Modena S. Quadratic interaction estimate for hyperbolic conservation laws, an overview. Contemporary Mathematics. Fundamental Directions. 2016 ;59:148–172.
Modena S. A quadratic interaction estimate for conservation laws: motivations, techniques and open problems. Bulletin of the Brazilian Mathematical Society, New Series [Internet]. 2016 ;47:589–604. Available from: https://doi.org/10.1007/s00574-016-0171-9
Bianchini S, Modena S. On a quadratic functional for scalar conservation laws. Journal of Hyperbolic Differential Equations [Internet]. 2014 ;11(2):355-435. Available from: http://arxiv.org/abs/1311.2929
Teta A. Quadratic forms for singular perturbations of the Laplacian. Publ. Res. Inst. Math. Sci. 26 (1990), no. 5, 803--817 [Internet]. 1990 . Available from: http://hdl.handle.net/1963/757
Agrachev AA. Quadratic cohomology. 2013 .
Malchiodi A, Struwe M. Q-curvature flow on S^4. J. Differential Geom. 73 (2006) 1-44 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2193

Pages

Sign in