On asymptotic regimes of orthogonal polynomials with complex varying quartic exponential weight. SIGMA Symmetry Integrability Geom. Methods Appl. [Internet]. 2016 ;12:Paper No. 118, 50 pages. Available from: http://dx.doi.org/10.3842/SIGMA.2016.118
. Asymptotics of orthogonal polynomials with complex varying quartic weight: global structure, critical point behavior and the first Painlevé equation. Constr. Approx. [Internet]. 2015 ;41:529–587. Available from: http://dx.doi.org/10.1007/s00365-015-9288-0
. Inversion formulae for the $\romancosh$-weighted Hilbert transform. Proc. Amer. Math. Soc. [Internet]. 2013 ;141:2703–2718. Available from: http://dx.doi.org/10.1090/S0002-9939-2013-11642-4
. Maximal amplitudes of finite-gap solutions for the focusing Nonlinear Schrödinger Equation. Comm. Math. Phys. [Internet]. 2017 ;354:525–547. Available from: http://dx.doi.org/10.1007/s00220-017-2895-9
. Meromorphic differentials with imaginary periods on degenerating hyperelliptic curves. Anal. Math. Phys. [Internet]. 2015 ;5:1–22. Available from: http://dx.doi.org/10.1007/s13324-014-0088-7
. Rogue waves in multiphase solutions of the focusing nonlinear Schrödinger equation. Proc. A. [Internet]. 2016 ;472:20160340, 12. Available from: http://dx.doi.org/10.1098/rspa.2016.0340
. Singular Value Decomposition of a Finite Hilbert Transform Defined on Several Intervals and the Interior Problem of Tomography: The Riemann-Hilbert Problem Approach. Comm. Pure Appl. Math. 2014 .
. On Sobolev instability of the interior problem of tomography. Journal of Mathematical Analysis and Applications. 2016 .
. Universality for the focusing nonlinear Schrödinger equation at the gradient catastrophe point: rational breathers and poles of the \it Tritronquée solution to Painlevé I. Comm. Pure Appl. Math. [Internet]. 2013 ;66:678–752. Available from: http://dx.doi.org/10.1002/cpa.21445
. Universality in the profile of the semiclassical limit solutions to the focusing nonlinear Schrödinger equation at the first breaking curve. Int. Math. Res. Not. IMRN [Internet]. 2010 :2119–2167. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1093/imrn/rnp196
. Universality of the Peregrine Soliton in the Focusing Dynamics of the Cubic Nonlinear Schrödinger Equation. Phys. Rev. Lett. [Internet]. 2017 ;119:033901. Available from: https://link.aps.org/doi/10.1103/PhysRevLett.119.033901