Lagrangian representations for linear and nonlinear transport. Contemporary Mathematics. Fundamental Directions [Internet]. 2017 ;63:418–436. Available from: http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=cmfd&paperid=327&option_lang=eng
. On the Lp-differentiability of certain classes of functions. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34695
. On a Lyapunov functional relating shortening curves and viscous conservation laws. Nonlinear Anal. 51 (2002) 649-662 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1337
. The Monge Problem for Distance Cost in Geodesic Spaces. Communications in Mathematical Physics [Internet]. 2013 ;318:615–673. Available from: https://doi.org/10.1007/s00220-013-1663-8
. A New Quadratic Potential for Scalar Conservation Laws. Oberwolfach Reports. 2013 ;29.
. A note on singular limits to hyperbolic systems of conservation laws. Commun. Pure Appl. Ana., 2003, 2, 51-64 [Internet]. 2003 . Available from: http://hdl.handle.net/1963/1542
. On optimality of c-cyclically monotone transference plans. Comptes Rendus Mathematique 348 (2010) 613-618 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/4023
. Properties of Mixing BV Vector Fields. Communications in Mathematical Physics [Internet]. 2023 ;402:1953–2009. Available from: https://doi.org/10.1007%2Fs00220-023-04780-z
. On a quadratic functional for scalar conservation laws. Journal of Hyperbolic Differential Equations [Internet]. 2014 ;11(2):355-435. Available from: http://arxiv.org/abs/1311.2929
. Quadratic Interaction Functional for General Systems of Conservation Laws. Communications in Mathematical Physics. 2015 ;338:1075–1152.
. Quadratic interaction functional for systems of conservation laws: a case study. Bulletin of the Institute of Mathematics of Academia Sinica (New Series) [Internet]. 2014 ;9:487-546. Available from: https://w3.math.sinica.edu.tw/bulletin_ns/20143/2014308.pdf
. Renormalization for Autonomous Nearly Incompressible BV Vector Fields in Two Dimensions. SIAM Journal on Mathematical Analysis [Internet]. 2016 ;48:1-33. Available from: https://doi.org/10.1137/15M1007380
. SBV regularity for genuinely nonlinear, strictly hyperbolic systems of conservation laws in one space dimension. Communications in Mathematical Physics 313 (2012) 1-33 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/4091
. SBV regularity for Hamilton-Jacobi equations in R^n. Arch. Rational Mech. Anal. 200 (2011) 1003-1021 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/4911
. SBV regularity for Hamilton-Jacobi equations with Hamiltonian depending on (t,x). Siam Journal on Mathematical Analysis [Internet]. 2012 ;44(3):2179-2203. Available from: http://hdl.handle.net/20.500.11767/14066
. SBV regularity of genuinely nonlinear hyperbolic systems of conservation laws in one space dimension. Acta Mathematica Scientia, Volume 32, Issue 1, January 2012, Pages 380-388 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6535
. SBV Regularity of Systems of Conservation Laws and Hamilton–Jacobi Equations. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34691
. SBV-like regularity for general hyperbolic systems of conservation laws in one space dimension. Rend. Istit. Mat. Univ. Trieste. 2012 ;44:439–472.
. SBV-like regularity for Hamilton-Jacobi equations with a convex Hamiltonian. Journal of Mathematical Analysis and Applications [Internet]. 2012 ;391(1):190-208. Available from: http://hdl.handle.net/20.500.11767/13909
. The semigroup generated by a Temple class system with non-convex flux function. Differential Integral Equations 13 (2000) 1529-1550 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/3221
. On the shift differentiability of the flow generated by a hyperbolic system of conservation laws. Discrete Contin. Dynam. Systems 6 (2000), no. 2, 329-350 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/1274
. Stability of L-infinity solutions for hyperbolic systems with coinciding shocks and rarefactions. Siam J. Math. Anal., 2001, 33, 959 [Internet]. 2001 . Available from: http://hdl.handle.net/1963/1523
. On the Stability of the Standard Riemann Semigroup. P. Am. Math. Soc., 2002, 130, 1961 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1528
. Structure of entropy solutions to general scalar conservation laws in one space dimension. Journal of Mathematical Analysis and Applications [Internet]. 2014 ;428(1):356-386. Available from: https://www.sciencedirect.com/science/article/pii/S0022247X15002218
. .