MENU

You are here

Publications

Export 15 results:
Filters: Author is Nicola Demo  [Clear All Filters]
2015
Calore E, Demo N, Schifano SFabio, Tripiccione R. Experience on vectorizing lattice Boltzmann kernels for multi-and many-core architectures. In: International Conference on Parallel Processing and Applied Mathematics. International Conference on Parallel Processing and Applied Mathematics. Springer; 2015. pp. 53–62.
2018
Demo N, Tezzele M, Mola A, Rozza G. An efficient shape parametrisation by free-form deformation enhanced by active subspace for hull hydrodynamic ship design problems in open source environment. The 28th International Ocean and Polar Engineering Conference [Internet]. 2018 . Available from: https://www.onepetro.org/conference-paper/ISOPE-I-18-481
Demo N, Tezzele M, Rozza G. EZyRB: Easy Reduced Basis method. The Journal of Open Source Software [Internet]. 2018 ;3:661. Available from: https://joss.theoj.org/papers/10.21105/joss.00661
Tezzele M, Demo N, Gadalla M, Mola A, Rozza G. Model Order Reduction by means of Active Subspaces and Dynamic Mode Decomposition for Parametric Hull Shape Design Hydrodynamics. In: Technology and Science for the Ships of the Future: Proceedings of NAV 2018: 19th International Conference on Ship & Maritime Research. Technology and Science for the Ships of the Future: Proceedings of NAV 2018: 19th International Conference on Ship & Maritime Research. Trieste, Italy: IOS Press; 2018. Available from: http://ebooks.iospress.nl/publication/49270
Demo N, Tezzele M, Rozza G. PyDMD: Python Dynamic Mode Decomposition. The Journal of Open Source Software [Internet]. 2018 ;3:530. Available from: https://joss.theoj.org/papers/734e4326edd5062c6e8ee98d03df9e1d
Demo N, Tezzele M, Gustin G, Lavini G, Rozza G. Shape Optimization by means of Proper Orthogonal Decomposition and Dynamic Mode Decomposition. In: Technology and Science for the Ships of the Future: Proceedings of NAV 2018: 19th International Conference on Ship & Maritime Research. Technology and Science for the Ships of the Future: Proceedings of NAV 2018: 19th International Conference on Ship & Maritime Research. Trieste, Italy: IOS Press; 2018. Available from: http://ebooks.iospress.nl/publication/49229
2020
Rozza G, Malik MH, Demo N, Tezzele M, Girfoglio M, Stabile G, Mola A. Advances in reduced order methods for parametric industrial problems in computational fluid dynamics. In: Proceedings of the 6th European Conference on Computational Mechanics: Solids, Structures and Coupled Problems, ECCM 2018 and 7th European Conference on Computational Fluid Dynamics, ECFD 2018. Proceedings of the 6th European Conference on Computational Mechanics: Solids, Structures and Coupled Problems, ECCM 2018 and 7th European Conference on Computational Fluid Dynamics, ECFD 2018. ; 2020. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075395686&partnerID=40&md5=fb0b1a3cfdfd35a104db9921bc9be675
Tezzele M, Demo N, Stabile G, Mola A, Rozza G. Enhancing CFD predictions in shape design problems by model and parameter space reduction. [Internet]. 2020 . Available from: https://arxiv.org/abs/2001.05237
Garotta F, Demo N, Tezzele M, Carraturo M, Reali A, Rozza G. Reduced order isogeometric analysis approach for pdes in parametrized domains. Lecture Notes in Computational Science and Engineering [Internet]. 2020 ;137:153-170. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089615035&doi=10.1007%2f978-3-030-48721-8_7&partnerID=40&md5=7b15836ae65fa28dcfe8733788d7730c
Demo N, Tezzele M, Rozza G. A supervised learning approach involving active subspaces for an efficient genetic algorithm in high-dimensional optimization problems. [Internet]. 2020 . Available from: https://arxiv.org/abs/2006.07282

Sign in