Export 479 results:
Filters: First Letter Of Last Name is B [Clear All Filters]
Inversion formulae for the $\romancosh$-weighted Hilbert transform. Proc. Amer. Math. Soc. [Internet]. 2013 ;141:2703–2718. Available from: http://dx.doi.org/10.1090/S0002-9939-2013-11642-4
. Isomonodromic deformation of resonant rational connections. IMRP Int. Math. Res. Pap. 2005 :565–635.
. Noncommutative Painlevé Equations and Systems of Calogero Type. Comm. Math. Phys. 2018 .
. Boutroux curves with external field: equilibrium measures without a variational problem. Anal. Math. Phys. [Internet]. 2011 ;1:167–211. Available from: http://dx.doi.org/10.1007/s13324-011-0012-3
. Jacobi groups, Jacobi forms and their applications. In: Isomonodromic deformations and applications in physics (Montréal, QC, 2000). Vol. 31. Isomonodromic deformations and applications in physics (Montréal, QC, 2000). Providence, RI: Amer. Math. Soc.; 2002. pp. 99–111.
. On asymptotic regimes of orthogonal polynomials with complex varying quartic exponential weight. SIGMA Symmetry Integrability Geom. Methods Appl. [Internet]. 2016 ;12:Paper No. 118, 50 pages. Available from: http://dx.doi.org/10.3842/SIGMA.2016.118
. Mesoscopic colonization in a spectral band. J. Phys. A [Internet]. 2009 ;42:415204, 17. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1088/1751-8113/42/41/415204
. The partition function of the extended $r$-reduced Kadomtsev-Petviashvili hierarchy. J. Phys. A [Internet]. 2015 ;48:195205, 20. Available from: http://dx.doi.org/10.1088/1751-8113/48/19/195205
. Effective inverse spectral problem for rational Lax matrices and applications. Int. Math. Res. Not. IMRN. 2007 :Art. ID rnm103, 39.
. Universality for the focusing nonlinear Schrödinger equation at the gradient catastrophe point: rational breathers and poles of the \it Tritronquée solution to Painlevé I. Comm. Pure Appl. Math. [Internet]. 2013 ;66:678–752. Available from: http://dx.doi.org/10.1002/cpa.21445
. Mixed correlation functions of the two-matrix model. J. Phys. A. 2003 ;36:7733–7750.
. Decomposing quantum fields on branes. Nuclear Phys. B. 2000 ;581:575–603.
. The Malgrange form and Fredholm determinants. SIGMA Symmetry Integrability Geom. Methods Appl. [Internet]. 2017 ;13:Paper No. 046, 12. Available from: http://dx.doi.org/10.3842/SIGMA.2017.046
. The dependence on the monodromy data of the isomonodromic tau function. Comm. Math. Phys. [Internet]. 2010 ;294:539–579. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1007/s00220-009-0961-7
. Universality Conjecture and Results for a Model of Several Coupled Positive-Definite Matrices. Commun. Math. Phys. [Internet]. 2015 ;337:1077–1141. Available from: http://link.springer.com/article/10.1007/s00220-015-2327-7
. The partition function of the two-matrix model as an isomonodromic τ function. J. Math. Phys. [Internet]. 2009 ;50:013529, 17. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1063/1.3054865
. Zeros of Large Degree Vorob'ev-Yablonski Polynomials via a Hankel Determinant Identity. International Mathematics Research Notices. 2014 ;rnu239.
. Two-matrix model with semiclassical potentials and extended Whitham hierarchy. J. Phys. A. 2006 ;39:8823–8855.
. Discriminant circle bundles over local models of Strebel graphs and Boutroux curves. Teoret. Mat. Fiz. [Internet]. 2018 ;197:163–207. Available from: https://doi.org/10.4213/tmf9513
. Spectra of random Hermitian matrices with a small-rank external source: the critical and near-critical regimes. J. Stat. Phys. [Internet]. 2012 ;146:475–518. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1007/s10955-011-0409-2
. Duality, biorthogonal polynomials and multi-matrix models. Comm. Math. Phys. 2002 ;229:73–120.
. First colonization of a spectral outpost in random matrix theory. Constr. Approx. [Internet]. 2009 ;30:225–263. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1007/s00365-008-9026-y
. Biorthogonal polynomials for two-matrix models with semiclassical potentials. J. Approx. Theory. 2007 ;144:162–212.
. The gap probabilities of the tacnode, Pearcey and Airy point processes, their mutual relationship and evaluation. Random Matrices: Theory and Applications [Internet]. 2013 ;02:1350003. Available from: http://www.worldscientific.com/doi/abs/10.1142/S2010326313500032
. Free energy of the two-matrix model/dToda tau-function. Nuclear Phys. B. 2003 ;669:435–461.
.