Export 259 results:
Filters: First Letter Of Last Name is D [Clear All Filters]
On almost duality for Frobenius manifolds. Amer. Math. Soc. Transl. 212 (2004)\\n75-132. [Internet]. 2004 . Available from: http://hdl.handle.net/1963/2543
. Hamiltonian PDEs: deformations, integrability, solutions. Journal of Physics A: Mathematical and Theoretical. Volume 43, Issue 43, 29 October 2010, Article number 434002 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/6469
. Integrable systems and classification of 2D topological field theories. In: Integrable systems : the Verdier memorial conference : actes du colloque international de Luminy / Olivier Babelon, Pierre Cartier, Yvette Kosmann-Schwarzbach editors. - Boston [etc.] : Birkhauser, c1993. - p. 313-359. Integrable systems : the Verdier memorial conference : actes du colloque international de Luminy / Olivier Babelon, Pierre Cartier, Yvette Kosmann-Schwarzbach editors. - Boston [etc.] : Birkhauser, c1993. - p. 313-359. SISSA; 1993. Available from: http://hdl.handle.net/1963/6478
. Frobenius Manifolds and Central Invariants for the Drinfeld - Sokolov Bihamiltonian Structures. Adv. Math. 219 (2008) 780-837 [Internet]. 2008 . Available from: http://hdl.handle.net/1963/2523
. Hamiltonian perturbations of hyperbolic PDEs: from classification results to the properties of solutions. In: New Trends in Mathematical Physics : Selected contributions of the XVth International Congress on Mathematical Physics, Springer Netherlands, 2009, pp. 231-276. New Trends in Mathematical Physics : Selected contributions of the XVth International Congress on Mathematical Physics, Springer Netherlands, 2009, pp. 231-276. SISSA; 2009. Available from: http://hdl.handle.net/1963/6470
. Virasoro Symmetries of the Extended Toda Hierarchy. Comm. Math.\\nPhys. 250 (2004) 161-193. [Internet]. 2004 . Available from: http://hdl.handle.net/1963/2544
. Frobenius manifolds and Virasoro constraints. Selecta Math. (N.S.) 5 (1999) 423-466 [Internet]. 1999 . Available from: http://hdl.handle.net/1963/2883
. Dispersion relations for non-linear waves and the Schottky problem. In: Important developments in soliton theory / A. S. Fokas, V. E. Zakharov (eds.) - Berlin : Springer-Verlag, 1993. - pages : 86-98. Important developments in soliton theory / A. S. Fokas, V. E. Zakharov (eds.) - Berlin : Springer-Verlag, 1993. - pages : 86-98. SISSA; 1993. Available from: http://hdl.handle.net/1963/6480
. Infinitely many positive solutions for a Schrödinger–Poisson system. Nonlinear Analysis: Theory, Methods & Applications [Internet]. 2011 ;74:5705 - 5721. Available from: http://www.sciencedirect.com/science/article/pii/S0362546X11003518
.