MENU

You are here

Publications

Export 1845 results:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
S
Giomi L, DeSimone A. Spontaneous division and motility in active nematic droplets. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34902
Gigli N. The splitting theorem in non-smooth context.; 2013. Available from: http://preprints.sissa.it/handle/1963/35306
Dabrowski L. Spin Structures and Global Conformal Transformations. [Internet]. 1984 . Available from: http://hdl.handle.net/1963/5854
Bonnard B, Charlot G, Ghezzi R, Janin G. The sphere and the cut locus at a tangency point in two-dimensional almost-Riemannian geometry. Journal of Dynamical and Control Systems [Internet]. 2011 ;17 :141-161. Available from: http://hdl.handle.net/1963/4914
Bassi J, Dabrowski L. Spectral triples on the Jiang-Su algebra. Journal of Mathematical Physics [Internet]. 2018 ;59:053507. Available from: https://doi.org/10.1063/1.5026311
Becker S, Michelangeli A, Ottolini A. Spectral Properties of the 2+1 Fermionic Trimer with Contact Interactions. [Internet]. 2017 . Available from: http://preprints.sissa.it/handle/1963/35303
Dabrowski L, Landi G, Paschke M, Sitarz A. The spectral geometry of the equatorial Podles sphere. C. R. Math. 340 (2005) 819-822 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/2275
D'Andrea F. Spectral geometry of k-Minkowski space. J. Math. Phys. 47 (2006) 062105 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2131
Hess MW, Rozza G. A spectral element reduced basis method in parametric CFD. Lecture Notes in Computational Science and Engineering [Internet]. 2019 ;126:693-701. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060005503&doi=10.1007%2f978-3-319-96415-7_64&partnerID=40&md5=d1a900db8ddb92cd818d797ec212a4c6
Hess MW, Rozza G. A Spectral Element Reduced Basis Method in Parametric CFD. In: Radu FAdrian, Kumar K, Berre I, Nordbotten JMartin, Pop ISorin Numerical Mathematics and Advanced Applications - ENUMATH 2017. Vol. 126. Numerical Mathematics and Advanced Applications - ENUMATH 2017. Springer International Publishing; 2019. Available from: https://arxiv.org/abs/1712.06432
Hess MW, Quaini A, Rozza G. A spectral element reduced basis method for navier–stokes equations with geometric variations. Lecture Notes in Computational Science and Engineering. 2020 ;134:561-571.
Boscain U, Prandi D, Seri M. Spectral analysis and the Aharonov-Bohm effect on certain almost-Riemannian manifolds. Communications in Partial Differential Equations [Internet]. 2016 ;41:32-50. Available from: https://doi.org/10.1080/03605302.2015.1095766
Bertola M, Buckingham R, Lee SY, Pierce V. Spectra of random Hermitian matrices with a small-rank external source: the critical and near-critical regimes. J. Stat. Phys. [Internet]. 2012 ;146:475–518. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1007/s10955-011-0409-2
Bertola M, Buckingham R, Lee SY, Pierce V. Spectra of random Hermitian matrices with a small-rank external source: the supercritical and subcritical regimes. J. Stat. Phys. [Internet]. 2013 ;153:654–697. Available from: http://dx.doi.org/10.1007/s10955-013-0845-2
Perotto S, Rozza G. Special Issue on Reduced Order Models in CFD. International Journal of Computational Fluid Dynamics [Internet]. 2020 ;34:91-92. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084258805&doi=10.1080%2f10618562.2020.1756497&partnerID=40&md5=d9316aad9ba95f244e07379318ebbcba
Ambrosio L, Braides A, Garroni A. Special functions with bounded variation and with weakly differentiable traces on the jump set. NoDEA Nonlinear Differential Equations Appl. 5 (1998), no. 2, 219--243 [Internet]. 1998 . Available from: http://hdl.handle.net/1963/1025
Bellettini G, Coscia A, Dal Maso G. Special functions of bounded deformation. [Internet]. 1995 . Available from: http://hdl.handle.net/1963/978
Cangiani A, Natalini R. A spatial model of cellular molecular trafficking including active transport along microtubules. J. Theoret. Biol. [Internet]. 2010 ;267:614–625. Available from: https://doi.org/10.1016/j.jtbi.2010.08.017
Ballarin F, Rozza G, Strazzullo M. Space-time POD-Galerkin approach for parametric flow control. Handbook of Numerical Analysis. 2022 ;23.
Panati G, Spohn H, Teufel S. Space-adiabatic perturbation theory in quantum dynamics. Physical review letters. 2002 Jun; 88(25 Pt 1):250405 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/5985
Panati G, Spohn H, Teufel S. Space-adiabatic perturbation theory. Adv. Theor. Math. Phys. 7 (2003) 145-204 [Internet]. 2003 . Available from: http://hdl.handle.net/1963/3041
Panati G. Space-adiabatic Decoupling in Quantum Dynamics. [Internet]. 2002 . Available from: http://hdl.handle.net/1963/6360
Agrachev AA. On the Space of Symmetric Operators with Multiple Ground States. Functional Analysis and its Applications, Volume 45, Issue 4, December 2011, Pages 241-251 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/7069
Lo Giudice A. Some topics on Higgs bundles over projective varieties and their moduli spaces. 2013 .
Dal Maso G. Some singular perturbation problems in the calculus of variations. Ennio De Giorgi Colloquium, p. 41-49, Research Notes in Mathematics, v.125, London : Pitman, 1985 [Internet]. 1985 . Available from: http://hdl.handle.net/1963/297

Pages

Sign in