MENU

You are here

Publications

Export 703 results:
Filters: First Letter Of Last Name is B  [Clear All Filters]
Journal Article
Bhowmick J, D'Andrea F, Dabrowski L. Quantum Isometries of the finite noncommutative geometry of the Standard Model. Commun. Math. Phys. 307:101-131, 2011 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/4906
Bahns D, Doplicher S, Fredenhagen K, Piacitelli G. Quantum Geometry on Quantum Spacetime: Distance, Area and Volume Operators. Commun. Math. Phys. 308 (2011) 567-589 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/5203
Bhowmick J, D'Andrea F, Das BKrishna, Dabrowski L. Quantum gauge symmetries in noncommutative geometry. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34897
Marigo A, Piccoli B, Bicchi A. Quantized control systems and discrete nonholonomy. Lagrangian and Hamiltonian Methods for Nonlinear Control : a proc. volume from the IFAC Workshop. Princeton, New Jersey, 16-18 March 2000 / ed. by N.E. Leonard, R. Ortega. - Oxford : Pergamon, 2000 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/1502
Berti M, Feola R, Franzoi L. Quadratic life span of periodic gravity-capillary water waves. Water Waves [Internet]. 2021 ;3:85–115. Available from: https://doi.org/10.1007/s42286-020-00036-8
Bianchini S, Modena S. Quadratic interaction functional for systems of conservation laws: a case study. Bulletin of the Institute of Mathematics of Academia Sinica (New Series) [Internet]. 2014 ;9:487-546. Available from: https://w3.math.sinica.edu.tw/bulletin_ns/20143/2014308.pdf
Bianchini S, Modena S. Quadratic Interaction Functional for General Systems of Conservation Laws. Communications in Mathematical Physics. 2015 ;338:1075–1152.
Bianchini S, Modena S. On a quadratic functional for scalar conservation laws. Journal of Hyperbolic Differential Equations [Internet]. 2014 ;11(2):355-435. Available from: http://arxiv.org/abs/1311.2929
Berti M, Franzoi L, Maspero A. Pure gravity traveling quasi-periodic water waves with constant vorticity. Comm. Pure Appl. Math. [Internet]. 2024 ;77:990–1064. Available from: https://doi.org/10.1002/cpa.22143
Bianchini S, Zizza M. Properties of Mixing BV Vector Fields. Communications in Mathematical Physics [Internet]. 2023 ;402:1953–2009. Available from: https://doi.org/10.1007%2Fs00220-023-04780-z
Heltai L, Bangerth W, Kronbichler M, Mola A. Propagating geometry information to finite element computations. Transactions on Mathematical Software. 2021 ;47(4):1--30.
Boscain U, Rossi F. Projective Reeds-Shepp car on $S^2$ with quadratic cost. ESAIM COCV 16 (2010) 275-297 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/2668
Karatzas EN, Ballarin F, Rozza G. Projection-based reduced order models for a cut finite element method in parametrized domains. Computers and Mathematics with Applications [Internet]. 2020 ;79:833-851. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070900852&doi=10.1016%2fj.camwa.2019.08.003&partnerID=40&md5=2d222ab9c7832955d155655d3c93e1b1
Boscain U, Piccoli B. Projection singularities of extremals for planar systems. [Internet]. 1999 . Available from: http://hdl.handle.net/1963/1304
Boscaggin A, Feltrin G. Positive subharmonic solutions to nonlinear ODEs with indefinite weight. Communications in Contemporary Mathematics [Internet]. 2018 ;20:1750021. Available from: https://doi.org/10.1142/S0219199717500213
Boscaggin A, Feltrin G, Zanolin F. Positive solutions for super-sublinear indefinite problems: high multiplicity results via coincidence degree. Trans. Amer. Math. Soc. [Internet]. 2018 . Available from: http://urania.sissa.it/xmlui/handle/1963/35264
Boscaggin A, Zanolin F. Positive periodic solutions of second order nonlinear equations with indefinite weight: Multiplicity results and complex dynamics. Journal of Differential Equations [Internet]. 2012 ;252:2922 - 2950. Available from: http://www.sciencedirect.com/science/article/pii/S0022039611003883
Bruzzo U, Poghossian R, Tanzini A. Poincaré polynomial of moduli spaces of framed sheaves on (stacky) Hirzebruch surfaces. Communications in Mathematical Physics 304 (2011) 395-409 [Internet]. 2011 ;304(2):395-409. Available from: http://hdl.handle.net/1963/3738
Busto S, Stabile G, Rozza G, Vázquez-Cendón ME. POD–Galerkin reduced order methods for combined Navier–Stokes transport equations based on a hybrid FV-FE solver. Computers and Mathematics with Applications [Internet]. 2020 ;79:256-273. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068068567&doi=10.1016%2fj.camwa.2019.06.026&partnerID=40&md5=a8dcce1b53b8ee872d174bbc4c20caa3
Ballarin F, Rozza G. POD–Galerkin monolithic reduced order models for parametrized fluid-structure interaction problems. International Journal Numerical Methods for Fluids. 2016 .
Strazzullo M, Ballarin F, Rozza G. POD–Galerkin Model Order Reduction for Parametrized Time Dependent Linear Quadratic Optimal Control Problems in Saddle Point Formulation. Journal of Scientific Computing. 2020 ;83.
Strazzullo M, Ballarin F, Rozza G. POD–Galerkin Model Order Reduction for Parametrized Time Dependent Linear Quadratic Optimal Control Problems in Saddle Point Formulation. Journal of Scientific Computing. 2020 ;83.
Ballarin F, D'Amario A, Perotto S, Rozza G. A POD-selective inverse distance weighting method for fast parametrized shape morphing. International Journal for Numerical Methods in Engineering [Internet]. 2019 ;117:860-884. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056396233&doi=10.1002%2fnme.5982&partnerID=40&md5=6aabcbdc9a0da25e36575a0ebfac034f
Boscaggin A, Garrione M. Planar Hamiltonian systems at resonance: the Ahmad–Lazer–Paul condition. Nonlinear Differential Equations and Applications NoDEA [Internet]. 2013 ;20:825–843. Available from: https://doi.org/10.1007/s00030-012-0181-2
Boscaggin A. Periodic solutions to superlinear planar Hamiltonian systems. Portugaliae Mathematica. 2012 ;69:127–141.

Pages

Sign in