You are here


Export 1507 results:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Berti M. Arnold diffusion: a functional analysis approach. Pr. Inst. Mat. Nats. Akad. Nauk Ukr. Mat. Zastos., 43, Part 1, 2, Natsīonal. Akad. Nauk Ukraïni, Īnst. Mat., Kiev, 2002. 2002 .
Berti M, Carminati C. Chaotic dynamics for perturbations of infinite-dimensional Hamiltonian systems. Nonlinear Anal. 48 (2002) 481-504 [Internet]. 2002 . Available from:
Berti M, Biasco L. Branching of Cantor Manifolds of Elliptic Tori and Applications to PDEs. Communications in Mathematical Physics. 2011 ;305:741-796.
Berti M, Biasco L, Bolle P. Drift in phase space: a new variational mechanism with optimal diffusion time. J. Math. Pures Appl. 82 (2003) 613-664 [Internet]. 2003 . Available from:
Berti M, Procesi M. Quasi-periodic solutions of completely resonant forced wave equations. Comm. Partial Differential Equations 31 (2006) 959 - 985 [Internet]. 2006 . Available from:
Berti M. Variational methods for Hamiltonian PDEs. NATO Science for Peace and Security Series B: Physics and Biophysics. 2008 :391-420.
Berti M, Bolle P. Bifurcation of free vibrations for completely resonant wave equations. Boll. Unione Mat. Ital. Sez. B 7 (2004) 519-528 [Internet]. 2004 . Available from:
Berti M, Bolle P. Sobolev quasi-periodic solutions of multidimensional wave equations with a multiplicative potential. Nonlinearity. 2012 ;25:2579-2613.
Berti M, Bolle P. Arnold's Diffusion in nearly integrable isochronous Hamiltonian systems. [Internet]. 2000 . Available from:
Berti M, Procesi M. Quasi-periodic oscillations for wave equations under periodic forcing. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 16 (2005), no. 2, 109-116 [Internet]. 2005 . Available from:
Berti M, Bolle P. Cantor families of periodic solutions for wave equations via a variational principle. Advances in Mathematics. 2008 ;217:1671-1727.
Bertola M, Eynard B. Mixed correlation functions of the two-matrix model. J. Phys. A. 2003 ;36:7733–7750.
Bertola M. The Malgrange form and Fredholm determinants. SIGMA Symmetry Integrability Geom. Methods Appl. [Internet]. 2017 ;13:Paper No. 046, 12. Available from:
Bertola M, Tovbis A. Universality for the focusing nonlinear Schrödinger equation at the gradient catastrophe point: rational breathers and poles of the \it Tritronquée solution to Painlevé I. Comm. Pure Appl. Math. [Internet]. 2013 ;66:678–752. Available from:
Bertola M. The dependence on the monodromy data of the isomonodromic tau function. Comm. Math. Phys. [Internet]. 2010 ;294:539–579. Available from:
Bertola M, Bros J, Moschella U, Schaeffer R. A general construction of conformal field theories from scalar anti-de Sitter quantum field theories. Nuclear Phys. B. 2000 ;587:619–644.
Bertola M, Marchal O. The partition function of the two-matrix model as an isomonodromic τ function. J. Math. Phys. [Internet]. 2009 ;50:013529, 17. Available from:
Bertola M, Bothner T. Universality Conjecture and Results for a Model of Several Coupled Positive-Definite Matrices. Commun. Math. Phys. [Internet]. 2015 ;337:1077–1141. Available from:
Bertola M. Two-matrix model with semiclassical potentials and extended Whitham hierarchy. J. Phys. A. 2006 ;39:8823–8855.
Bertola M, Cafasso M, Rubtsov V. Noncommutative Painlevé Equations and Systems of Calogero Type. Comm. Math. Phys. 2018 .
Bertola M, Bothner T. Zeros of Large Degree Vorob'ev-Yablonski Polynomials via a Hankel Determinant Identity. International Mathematics Research Notices. 2014 ;rnu239.
Bertola M, Buckingham R, Lee SY, Pierce V. Spectra of random Hermitian matrices with a small-rank external source: the critical and near-critical regimes. J. Stat. Phys. [Internet]. 2012 ;146:475–518. Available from:
Bertola M, Lee SY. First colonization of a spectral outpost in random matrix theory. Constr. Approx. [Internet]. 2009 ;30:225–263. Available from:
Bertola M, Gorini V, Moschella U, Schaeffer R. Correspondence between Minkowski and de Sitter quantum field theory. Phys. Lett. B. 1999 ;462:249–253.
Bertola M. Biorthogonal polynomials for two-matrix models with semiclassical potentials. J. Approx. Theory. 2007 ;144:162–212.


Sign in