You are here


Export 1557 results:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Berti M, Biasco L, Procesi M. Existence and stability of quasi-periodic solutions for derivative wave equations. Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica e Applicazioni. 2013 ;24:199-214.
Berti M, Bolle P. Cantor families of periodic solutions for completely resonant wave equations. Frontiers of Mathematics in China. 2008 ;3:151-165.
Berti M, Biasco L, Procesi M. KAM for Reversible Derivative Wave Equations. Arch. Ration. Mech. Anal. [Internet]. 2014 ;212(3):905-955. Available from:
Berti M. Arnold diffusion: a functional analysis approach. Pr. Inst. Mat. Nats. Akad. Nauk Ukr. Mat. Zastos., 43, Part 1, 2, Natsīonal. Akad. Nauk Ukraïni, Īnst. Mat., Kiev, 2002. 2002 .
Berti M, Biasco L. Branching of Cantor Manifolds of Elliptic Tori and Applications to PDEs. Communications in Mathematical Physics. 2011 ;305:741-796.
Berti M, Biasco L, Bolle P. Optimal stability and instability results for a class of nearly integrable Hamiltonian systems. Atti.Accad.Naz.Lincei Cl.Sci.Fis.Mat.Natur.Rend.Lincei (9) Mat.Appl.13(2002),no.2,77-84 [Internet]. 2002 . Available from:
Berti M, Bolle P. Arnold's Diffusion in nearly integrable isochronous Hamiltonian systems. [Internet]. 2000 . Available from:
Berti M, Delort J-M. Almost global existence of solutions for capillarity-gravity water waves equations with periodic spatial boundary conditions.; 2017. Available from:
Berti M, Bolle P. Fast Arnold diffusion in systems with three time scales. Discrete Contin. Dyn. Syst. 8 (2002) 795-811 [Internet]. 2002 . Available from:
Berti M, Biasco L. Forced vibrations of wave equations with non-monotone nonlinearities. Ann. Inst. H. Poincaré Anal. Non Linéaire 23 (2006) 439-474 [Internet]. 2006 . Available from:
Berti M, Biasco L, Valdinoci E. Periodic orbits close to elliptic tori and applications to the three-body problem. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 3 (2004) 87-138 [Internet]. 2004 . Available from:
Berti M, Bolle P. A functional analysis approach to Arnold diffusion. Ann. Inst. H. Poincare Anal. Non Lineaire 19 (2002) 395-450 [Internet]. 2002 . Available from:
Berti M. Variational methods for Hamiltonian PDEs. NATO Science for Peace and Security Series B: Physics and Biophysics. 2008 :391-420.
Berti M, Bolle P. Multiplicity of periodic solutions of nonlinear wave equations. Nonlinear Anal. 56 (2004) 1011-1046 [Internet]. 2004 . Available from:
Berti M, Bolle P. Periodic solutions of nonlinear wave equations with general nonlinearities. Comm.Math.Phys. 243 (2003) no.2, 315 [Internet]. 2003 . Available from:
Berti M, Biasco L. Periodic solutions of nonlinear wave equations with non-monotone forcing terms. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 16 (2005), no. 2, 117-124 [Internet]. 2005 . Available from:
Bertola M, Bothner T. Zeros of Large Degree Vorob'ev-Yablonski Polynomials via a Hankel Determinant Identity. International Mathematics Research Notices. 2014 ;rnu239.
Bertola M. Two-matrix model with semiclassical potentials and extended Whitham hierarchy. J. Phys. A. 2006 ;39:8823–8855.
Bertola M, Cafasso M, Rubtsov V. Noncommutative Painlevé Equations and Systems of Calogero Type. Comm. Math. Phys. 2018 .
Bertola M, Buckingham R, Lee SY, Pierce V. Spectra of random Hermitian matrices with a small-rank external source: the critical and near-critical regimes. J. Stat. Phys. [Internet]. 2012 ;146:475–518. Available from:
Bertola M, Lee SY. First colonization of a spectral outpost in random matrix theory. Constr. Approx. [Internet]. 2009 ;30:225–263. Available from:
Bertola M, Gorini V, Moschella U, Schaeffer R. Correspondence between Minkowski and de Sitter quantum field theory. Phys. Lett. B. 1999 ;462:249–253.
Bertola M. Biorthogonal polynomials for two-matrix models with semiclassical potentials. J. Approx. Theory. 2007 ;144:162–212.
Bertola M, Cafasso M. The gap probabilities of the tacnode, Pearcey and Airy point processes, their mutual relationship and evaluation. Random Matrices: Theory and Applications [Internet]. 2013 ;02:1350003. Available from:
Bertola M. Free energy of the two-matrix model/dToda tau-function. Nuclear Phys. B. 2003 ;669:435–461.


Sign in