The relaxed area of $S^1$-valued singular maps in the strict $BV$-convergence. ESAIM: Control, Optimization and Calculus of Variations [Internet]. 2022 ;28:38. Available from: http://cvgmt.sns.it/paper/5440/
. Minimizing Movements for Mean Curvature Flow of Partitions. SIAM Journal on Mathematical Analysis [Internet]. 2018 ;50:4117-4148. Available from: https://doi.org/10.1137/17M1159294
. Special functions of bounded deformation. [Internet]. 1995 . Available from: http://hdl.handle.net/1963/978
. The Real Polynomial Eigenvalue Problem is Well Conditioned on the Average. Foundations of Computational Mathematics [Internet]. 2019 . Available from: https://doi.org/10.1007/s10208-019-09414-2
. Model order reduction of parameterized systems (MoRePaS): Preface to the special issue of advances in computational mathematics. Advances in Computational Mathematics. 2015 ;41:955–960.
. Symmetry enhancements via 5d instantons, qW-algebrae and (1,0) superconformal index. Journal of High Energy Physics [Internet]. 2016 ;2016:53. Available from: https://doi.org/10.1007/JHEP09(2016)053
. On the distribution of the van der Corput sequences. Archiv der Mathematik. 2023 .
. Gauge theories on compact toric surfaces, conformal field theories and equivariant Donaldson invariants. Journal of Geometry and Physics [Internet]. 2017 ;118:40 - 50. Available from: http://www.sciencedirect.com/science/article/pii/S0393044017300165
. Exact results for N=2 supersymmetric gauge theories on compact toric manifolds and equivariant Donaldson invariants. Journal of High Energy Physics [Internet]. 2016 ;2016:23. Available from: https://doi.org/10.1007/JHEP07(2016)023
. Sobolev periodic solutions of nonlinear wave equations in higher spatial dimensions. Archive for Rational Mechanics and Analysis. 2010 ;195:609-642.
. Quasi-periodic oscillations for wave equations under periodic forcing. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 2005 ;16:109–116.
. Stokes waves at the critical depth are modulationally unstable. Comm. Math. Phys. [Internet]. 2024 ;405:Paper No. 56, 67. Available from: https://doi.org/10.1007/s00220-023-04928-x
. Birkhoff normal form for gravity water waves. Water Waves [Internet]. 2021 ;3:117–126. Available from: https://doi.org/10.1007/s42286-020-00024-y
. Quasi-periodic solutions with Sobolev regularity of NLS on Td with a multiplicative potential. Journal of the European Mathematical Society. 2013 ;15:229-286.
. Quasi-periodic solutions of PDEs. In: Séminaire Laurent Schwartz–-Équations aux dérivées partielles et applications. Année 2011–2012. Séminaire Laurent Schwartz–-Équations aux dérivées partielles et applications. Année 2011–2012. École Polytech., Palaiseau; 2013. p. Exp. No. XXX, 11.
. KAM for Vortex Patches. Regular and Chaotic Dynamics [Internet]. 2024 ;29(4):654 - 676. Available from: https://doi.org/10.1134/S1560354724540013
. Cantor families of periodic solutions for wave equations via a variational principle. Advances in Mathematics. 2008 ;217:1671-1727.
. Periodic solutions of nonlinear wave equations with general nonlinearities. Comm. Math. Phys. [Internet]. 2003 ;243:315–328. Available from: https://doi.org/10.1007/s00220-003-0972-8
. Time quasi-periodic vortex patches of Euler equation in the plane. Invent. Math. [Internet]. 2023 ;233:1279–1391. Available from: https://doi.org/10.1007/s00222-023-01195-4
. Quasi-periodic solutions of nonlinear wave equations on the $d$-dimensional torus. EMS Publishing House, Berlin; 2020 p. xv+358.
. Some remarks on a variational approach to Arnold's diffusion. Discrete Contin. Dynam. Systems [Internet]. 1996 ;2:307–314. Available from: https://doi.org/10.3934/dcds.1996.2.307
. Soluzioni periodiche di PDEs Hamiltoniane. Bollettino dell\\\'Unione Matematica Italiana Serie 8 7-B (2004), p. 647-661 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/4582
. An abstract Nash-Moser theorem with parameters and applications to PDEs. Annales de l'Institut Henri Poincare. Annales: Analyse Non Lineaire/Nonlinear Analysis. 2010 ;27:377-399.
. Cantor families of periodic solutions for completely resonant nonlinear wave equations. Duke Math. J. 134 (2006) 359-419 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2161
. Quasi-periodic solutions of completely resonant forced wave equations. Comm. Partial Differential Equations [Internet]. 2006 ;31:959–985. Available from: https://doi.org/10.1080/03605300500358129
.