Holomorphic Cartan geometry on manifolds with numerically effective tangent bundle. Differential Geometry and its Applications 29 (2011) 147-153 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/3830
. Homoclinics and chaotic behaviour for perturbed second order systems. Ann. Mat. Pura Appl. (4) [Internet]. 1999 ;176:323–378. Available from: https://doi.org/10.1007/BF02506001
. Homoclinics and chaotic behaviour for perturbed second order systems. Ann. Mat. Pura Appl. (4) [Internet]. 1999 ;176:323–378. Available from: https://doi.org/10.1007/BF02506001
. Homoclinics and complex dynamics in slowly oscillating systems. Discrete Contin. Dynam. Systems [Internet]. 1998 ;4:393–403. Available from: https://doi.org/10.3934/dcds.1998.4.393
. Homogenization of fiber reinforced brittle materials: the extremal cases. SIAM J. Math. Anal. 41 (2009) 1874-1889 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/2705
. Homotopically invisible singular curves. Calculus of Variations and Partial Differential Equations [Internet]. 2017 ;56:105. Available from: https://doi.org/10.1007/s00526-017-1203-z
. Homotopy properties of horizontal path spaces and a theorem of Serre in subriemannian geometry. Communications in Analysis and Geometry. 2017 ;25:269–301.
. A hybrid reduced order method for modelling turbulent heat transfer problems. Computers & Fluids [Internet]. 2020 ;208:104615. Available from: https://arxiv.org/abs/1906.08725
. Hybridization in nanostructured DNA monolayers probed by AFM: theory versus experiment. Nanoscale. 2012 Mar; 4(5):1734-41. 2012 .
. Hybridization in nanostructured DNA monolayers probed by AFM: theory versus experiment. Nanoscale. 2012 Mar; 4(5):1734-41. 2012 .
. Hyperbolic Systems of Conservation Laws. Rev. Mat. Complut. 12 (1999) 135-200 [Internet]. 1999 . Available from: http://hdl.handle.net/1963/1855
. An ill posed Cauchy problem for a hyperbolic system in two space dimensions. [Internet]. 2003 . Available from: http://hdl.handle.net/1963/2913
. An improved geometric inequality via vanishing moments, with applications to singular Liouville equations. Communications in Mathematical Physics 322, nr.2 (2013): 415-452 [Internet]. 2013 . Available from: http://hdl.handle.net/1963/6561
. An instability of the Godunov scheme. Comm. Pure Appl. Math. 59 (2006) 1604-1638 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2183
. An instability of the Godunov scheme. Comm. Pure Appl. Math. 59 (2006) 1604-1638 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2183
. The intrinsic hypoelliptic Laplacian and its heat kernel on unimodular Lie groups. J. Funct. Anal. 256 (2009) 2621-2655 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/2669
. Invariant Carnot-Caratheodory metrics on S3, SO(3), SL(2) and Lens Spaces. SIAM J. Control Optim. 47 (2008) 1851-1878 [Internet]. 2008 . Available from: http://hdl.handle.net/1963/2144
. Invariant manifolds for a singular ordinary differential equation. Journal of Differential Equations 250 (2011) 1788-1827 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/2554
. Inversion formulae for the $\romancosh$-weighted Hilbert transform. Proc. Amer. Math. Soc. [Internet]. 2013 ;141:2703–2718. Available from: http://dx.doi.org/10.1090/S0002-9939-2013-11642-4
. Isomonodromic deformation of resonant rational connections. IMRP Int. Math. Res. Pap. 2005 :565–635.
. Iterative map-making with two-level preconditioning for polarized cosmic microwave background data sets. A worked example for ground-based experiments. ASTRONOMY & ASTROPHYSICS [Internet]. 2018 ;618:1–14. Available from: https://arxiv.org/abs/1801.08937
. KAM for autonomous quasi-linear perturbations of KdV. Ann. Inst. H. Poincaré C Anal. Non Linéaire [Internet]. 2016 ;33:1589–1638. Available from: https://doi.org/10.1016/j.anihpc.2015.07.003
. KAM for autonomous quasi-linear perturbations of KdV. Ann. Inst. H. Poincaré C Anal. Non Linéaire [Internet]. 2016 ;33:1589–1638. Available from: https://doi.org/10.1016/j.anihpc.2015.07.003
. KAM for autonomous quasi-linear perturbations of mKdV. Boll. Unione Mat. Ital. [Internet]. 2016 ;9:143–188. Available from: https://doi.org/10.1007/s40574-016-0065-1
. KAM for autonomous quasi-linear perturbations of mKdV. Boll. Unione Mat. Ital. [Internet]. 2016 ;9:143–188. Available from: https://doi.org/10.1007/s40574-016-0065-1
.