Prescribing scalar and boundary mean curvature on the three dimensional half sphere. J. Geom. Anal. 13 (2003) 255-289 [Internet]. 2003 . Available from: http://hdl.handle.net/1963/3086
. Principal fibrations over noncommutative spheres. Reviews in Mathematical Physics [Internet]. 2018 ;30:1850020. Available from: https://arxiv.org/abs/1804.07032
. Product of real spectral triples. International Journal of Geometric Methods in Modern Physics 8 (2011) 1833-1848 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/5510
. Product of real spectral triples. International Journal of Geometric Methods in Modern Physics 8 (2011) 1833-1848 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/5510
. PyDMD: Python Dynamic Mode Decomposition. The Journal of Open Source Software [Internet]. 2018 ;3:530. Available from: https://joss.theoj.org/papers/734e4326edd5062c6e8ee98d03df9e1d
. PyGeM: Python Geometrical Morphing. Software Impacts. 2021 ;7:100047.
. Quantum gauge symmetries in noncommutative geometry. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34897
. Quantum gauge symmetries in noncommutative geometry. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34897
. Quantum gauge symmetries in noncommutative geometry. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34897
. Quantum Geometry on Quantum Spacetime: Distance, Area and Volume Operators. Commun. Math. Phys. 308 (2011) 567-589 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/5203
. Quantum Isometries of the finite noncommutative geometry of the Standard Model. Commun. Math. Phys. 307:101-131, 2011 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/4906
. Quantum Isometries of the finite noncommutative geometry of the Standard Model. Commun. Math. Phys. 307:101-131, 2011 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/4906
. Quantum spin coverings and statistics. J. Phys. A 36 (2003), no. 13, 3829-3840 [Internet]. 2003 . Available from: http://hdl.handle.net/1963/1667
. Quasiconvex envelopes of energies for nematic elastomers in the small strain regime and applications. Journal of the Mechanics and Physics of Solids 59 (2011) 787-803 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/4065
. Quasistatic crack growth in elasto-plastic materials: the two-dimensional case. Arch. Ration. Mech. Anal. 196 (2010) 867-906 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/2964
. Quasistatic crack growth in finite elasticity with non-interpenetration. Ann. Inst. H. Poincare Anal. Non Lineaire 27 (2010) 257-290 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/3397
. Quasi-static crack growth in hydraulic fracture. Nonlinear Analysis [Internet]. 2014 ;109(Nov):301-318. Available from: http://hdl.handle.net/20.500.11767/17350
. Quasistatic Crack Growth in Nonlinear Elasticity. Arch. Ration. Mech. Anal. 176 (2005) 165-225 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/2293
. Quasistatic evolution for Cam-Clay plasticity: a weak formulation via viscoplastic regularization and time rescaling. Calculus of Variations and Partial Differential Equations 40 (2011) 125-181 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/3670
. Quasistatic evolution for Cam-Clay plasticity: a weak formulation via viscoplastic regularization and time rescaling. Calculus of Variations and Partial Differential Equations 40 (2011) 125-181 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/3670
. Quasistatic evolution for Cam-Clay plasticity: examples of spatially homogeneous solutions. Math. Models Methods Appl. Sci. 19 (2009) 1643-1711 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/3395
. Quasistatic evolution for Cam-Clay plasticity: examples of spatially homogeneous solutions. Math. Models Methods Appl. Sci. 19 (2009) 1643-1711 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/3395
. Quasistatic evolution for Cam-Clay plasticity: properties of the viscosity solution. Calculus of variations and partial differential equations 44 (2012) 495-541 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/3900
. Quasistatic evolution for Cam-Clay plasticity: properties of the viscosity solution. Calculus of variations and partial differential equations 44 (2012) 495-541 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/3900
. Quasistatic evolution for Cam-Clay plasticity: the spatially homogeneous case. Netw. Heterog. Media 5 (2010) 97-132 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/3671
.