MENU

You are here

Publications

Export 1505 results:
2015
Bawane A, Bonelli G, Ronzani M, Tanzini A. N=2 supersymmetric gauge theories on S^2xS^2 and Liouville Gravity. Journal of High Energy Physics [Internet]. 2015 ;2015:54. Available from: https://doi.org/10.1007/JHEP07(2015)054
Merzi D. Normal matrix models and orthogonal polynomials for a class of potentials with discrete rotational symmetries. 2015 .
Battaglia L, Mancini G. A note on compactness properties of the singular Toda system. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. . 2015 ;26:299-307.
Mancini G. Onofri-Type Inequalities for Singular Liouville Equations. 2015 .
Bertola M, Yang D. The partition function of the extended $r$-reduced Kadomtsev-Petviashvili hierarchy. J. Phys. A [Internet]. 2015 ;48:195205, 20. Available from: http://dx.doi.org/10.1088/1751-8113/48/19/195205
Fonda A, Gidoni P. A permanence theorem for local dynamical systems. Nonlinear Analysis: Theory, Methods & Applications [Internet]. 2015 ;121:73 - 81. Available from: http://www.sciencedirect.com/science/article/pii/S0362546X14003332
Mazzolini M, Facchetti G, Andolfi L, R. Zaccaria P, Tuccio S, Treud J, Altafini C, Di Fabrizio EM, Lazzarino M, Rapp G, et al. The phototransduction machinery in the rod outer segment has a strong efficacy gradient. [Internet]. 2015 . Available from: http://urania.sissa.it/xmlui/handle/1963/35157
Carlet G, Casati M, Shadrin S. Poisson cohomology of scalar multidimensional Dubrovin-Novikov brackets.; 2015.
Arici F. Principal circle bundles, Pimsner algebras and Gysin sequences. 2015 .
Bianchini S, Modena S. Quadratic Interaction Functional for General Systems of Conservation Laws. Communications in Mathematical Physics. 2015 ;338:1075–1152.
Martini I, Rozza G, Haasdonk B. Reduced basis approximation and a-posteriori error estimation for the coupled Stokes-Darcy system. Advances in Computational Mathematics. 2015 ;special issue for MoRePaS 2012(in press).
Pacciarini P, Rozza G. Reduced basis approximation of parametrized advection-diffusion PDEs with high Péclet number. Lecture Notes in Computational Science and Engineering. 2015 ;103:419–426.
Negri F, Manzoni A, Rozza G. Reduced basis approximation of parametrized optimal flow control problems for the Stokes equations. Computers and Mathematics with Applications. 2015 ;69:319–336.
Manzoni A, Salmoiraghi F, Heltai L. Reduced Basis Isogeometric Methods (RB-IGA) for the real-time simulation of potential flows about parametrized NACA airfoils. Comput Methods Appl Mech Eng. 2015;284:1147–1180. 2015 .
Tealdi L. The relaxed area of maps from the plane to the plane with a line discontinuity, and the role of semicartesian surfaces. 2015 .
Tealdi L, Bellettini G, Paolini M. Results on the minimization of the Dirichlet functional among semicartesian parametrizations.; 2015. Available from: http://urania.sissa.it/xmlui/handle/1963/34488
Lazzaroni G, Palombaro M, Schlomerkemper A. Rigidity of three-dimensional lattices and dimension reduction in heterogeneous nanowires. SISSA; 2015. Available from: http://urania.sissa.it/xmlui/handle/1963/7494
Dell'Antonio G, Michelangeli A. Schödinger operators on half-line with shrinking potentials at the origin. SISSA; 2015. Available from: http://urania.sissa.it/xmlui/handle/1963/34439
Tealdi L, Bellettini G, Paolini M. Semicartesian surfaces and the relaxed area of maps from the plane to the plane with a line discontinuity.; 2015. Available from: http://urania.sissa.it/xmlui/handle/1963/34483
Mancini G. Sharp Inequalities and Blow-up Analysis for Singular Moser-Trudinger Embeddings. 2015 .
Mancini G. Singular Liouville Equations on S^2: Sharp Inequalities and Existence Results.; 2015. Available from: http://urania.sissa.it/xmlui/handle/1963/34489
Amato S. Some results on anisotropic mean curvature and other phase-transition problems. 2015 .
Michelangeli A, Monaco D. Stability of closed gaps for the alternating Kronig-Penney Hamiltonian. SISSA; 2015. Available from: http://urania.sissa.it/xmlui/handle/1963/34460
Michelangeli A, Pfeiffer P. Stability of the (2+2)-fermionic system with zero-range interaction.; 2015. Available from: http://urania.sissa.it/xmlui/handle/1963/34474
Bonacini M, Morini M. Stable regular critical points of the Mumford-Shah functional are local minimizers. Annales de l'Institut Henri Poincare (C) Non Linear Analysis [Internet]. 2015 ;32(3):533-570. Available from: https://www.sciencedirect.com/science/article/pii/S0294144914000171

Pages

Sign in