MENU

You are here

Publications

Export 1510 results:
Journal Article
Malchiodi A, Ruiz D. A variational Analysis of the Toda System on Compact Surfaces. Communications on Pure and Applied Mathematics, Volume 66, Issue 3, March 2013, Pages 332-371 [Internet]. 2013 . Available from: http://hdl.handle.net/1963/6558
Bianchini S, Bressan A. Vanishing viscosity solutions of nonlinear hyperbolic systems. Ann. of Math. 161 (2005) 223-342 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/3074
Bianchini S, Bressan A. Vanishing viscosity solutions of hyperbolic systems on manifolds. [Internet]. 1999 . Available from: http://hdl.handle.net/1963/1238
Dal Maso G, DeSimone A, Mora MG, Morini M. A vanishing viscosity approach to quasistatic evolution in plasticity with softening. Arch. Ration. Mech. Anal. 189 (2008) 469-544 [Internet]. 2008 . Available from: http://hdl.handle.net/1963/1844
Dal Maso G, Frankowska H. Value Functions for Bolza Problems with Discontinuous Lagrangians and Hamilton-Jacobi inequalities. ESAIM Control Optim. Calc. Var., 5 (2000), n. 5, p. 369-393. [Internet]. 2000 . Available from: http://hdl.handle.net/1963/1514
Bressan A, Cellina A, Colombo G. Upper semicontinuous differential inclusions without convexity. Proc. Amer. Math. Soc. 106 (1989), no. 3, 771-775 [Internet]. 1989 . Available from: http://hdl.handle.net/1963/670
Tikan A, Billet C, El G, Tovbis A, Bertola M, Sylvestre T, Gustave F, Randoux S, Genty G, Suret P, et al. Universality of the Peregrine Soliton in the Focusing Dynamics of the Cubic Nonlinear Schrödinger Equation. Phys. Rev. Lett. [Internet]. 2017 ;119:033901. Available from: https://link.aps.org/doi/10.1103/PhysRevLett.119.033901
Bertola M, Cafasso M. Universality of the matrix Airy and Bessel functions at spectral edges of unitary ensembles. Random Matrices Theory Appl. [Internet]. 2017 ;6:1750010, 22. Available from: http://dx.doi.org/10.1142/S2010326317500101
Grava T, Claeys T. Universality of the break-up profile for the KdV equation in the small dispersion limit using the Riemann-Hilbert approach. Comm. Math. Phys. 286 (2009) 979-1009 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/2636
Dubrovin B, Grava T, Klein C. On universality of critical behaviour in the focusing nonlinear Schrödinger equation, elliptic umbilic catastrophe and the \\\\it tritronquée solution to the Painlevé-I equation. J. Nonlinear Sci. 19 (2009) 57-94 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/2525
Bertola M, Tovbis A. Universality in the profile of the semiclassical limit solutions to the focusing nonlinear Schrödinger equation at the first breaking curve. Int. Math. Res. Not. IMRN [Internet]. 2010 :2119–2167. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1093/imrn/rnp196
Bertola M, Tovbis A. Universality for the focusing nonlinear Schrödinger equation at the gradient catastrophe point: rational breathers and poles of the \it Tritronquée solution to Painlevé I. Comm. Pure Appl. Math. [Internet]. 2013 ;66:678–752. Available from: http://dx.doi.org/10.1002/cpa.21445
Bertola M, Bothner T. Universality Conjecture and Results for a Model of Several Coupled Positive-Definite Matrices. Commun. Math. Phys. [Internet]. 2015 ;337:1077–1141. Available from: http://link.springer.com/article/10.1007/s00220-015-2327-7
Alberti G, Bianchini S, Crippa G. A uniqueness result for the continuity equation in two dimensions: dedicated to constantine dafermos on the occasion of his 70th birthday. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34692
Dal Maso G, Frankowska H. Uniqueness of solutions to Hamilton-Jacobi equations arising in the Calculus of Variations. Optimal control and partial differential equations : in honour of professor Alain Bensoussan\\\'s 60th birthday / edited by José Luis Menaldi, Edmundo Rofman, and Agnès Sulem.,Amsterdam : IOS Press, 2001, p. 335-345 [Internet]. 2001 . Available from: http://hdl.handle.net/1963/1515
Baiti P, LeFloch PG, Piccoli B. Uniqueness of classical and nonclassical solutions for nonlinear hyperbolic systems. J. Differential Equations 172 (2001) 59-82 [Internet]. 2001 . Available from: http://hdl.handle.net/1963/3113
Bressan A, Shen W. Uniqueness for discontinuous ODE and conservation laws. Nonlinear Analysis 34 (1998) 637-652 [Internet]. 1998 . Available from: http://hdl.handle.net/1963/3699
Bressan A, Lewicka M. A Uniqueness Condition for Hyperbolic Systems of Conservation Laws. Discrete Contin. Dynam. Systems 6 (2000) 673-682 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/3195
Selvitella A. Uniqueness and nondegeneracy of the ground state for a quasilinear Schrödinger equation with a small parameter. Nonlinear Analysis: Theory, Methods & Applications [Internet]. 2011 ;74:1731 - 1737. Available from: http://www.sciencedirect.com/science/article/pii/S0362546X10007613
Vidossich G. Uniqueness and multiplicity of periodic solutions to first order ordinary differential equations. Not Found [Internet]. 0 . Available from: http://hdl.handle.net/1963/321
Zagatti S. Uniqueness and continuous dependence on boundary data for integro-extremal minimizers of the functional of the gradient. J. Convex Anal. 14 (2007) 705-727 [Internet]. 2007 . Available from: http://hdl.handle.net/1963/2762
Bressan A, Colombo RM. Unique solutions of 2x2 conservation laws with large data. Indiana Univ. Math. J. 44 (1995), no. 3, 677-725 [Internet]. 1995 . Available from: http://hdl.handle.net/1963/975
Vidossich G. The two-point boundary value problem from the Cauchy problem. J. Differential Equations 60 (1985), no. 1, 1--20 [Internet]. 1985 . Available from: http://hdl.handle.net/1963/332
Bertola M. Two-matrix model with semiclassical potentials and extended Whitham hierarchy. J. Phys. A. 2006 ;39:8823–8855.
Iraso R, Mnev P. Two-Dimensional Yang–Mills Theory on Surfaces with Corners in Batalin–Vilkovisky Formalism. Communications in Mathematical Physics [Internet]. 2019 . Available from: https://doi.org/10.1007/s00220-019-03392-w

Pages

Sign in