You are here


Export 1593 results:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Tezzele M, Salmoiraghi F, Mola A, Rozza G. Dimension reduction in heterogeneous parametric spaces with application to naval engineering shape design problems. Advanced Modeling and Simulation in Engineering Sciences. 2018 ;5:25.
Daneri S. Dimensional Reduction and Approximation of Measures and Weakly Differentiable Homeomorphisms. [Internet]. 2011 . Available from:
Dabrowski L, Dossena G. Dirac operator on spinors and diffeomorphisms. Classical and Quantum Gravity. Volume 30, Issue 1, 7 January 2013, Article number 015006 [Internet]. 2013 . Available from:
Dabrowski L, Landi G, Sitarz A, van Suijlekom W, Varilly JC. The Dirac operator on SU_q(2). Commun. Math. Phys. 259 (2005) 729-759 [Internet]. 2005 . Available from:
Dabrowski L, Sitarz A. Dirac operator on the standard Podles quantum sphere. Noncommutative geometry and quantum groups (Warsaw 2001),49,Banach Center Publ., 61, Polish Acad.Sci., Warsaw,2003 [Internet]. 2001 . Available from:
D'Andrea F, Dabrowski L, Landi G, Wagner E. Dirac operators on all Podles quantum spheres. J. Noncomm. Geom. 1 (2007) 213-239 [Internet]. 2007 . Available from:
Sitarz A, Zucca A, Dabrowski L. Dirac operators on noncommutative principal circle bundles. [Internet]. 2014 . Available from:
D'Andrea F, Dabrowski L. Dirac Operators on Quantum Projective Spaces. Comm. Math. Phys. 295 (2010) 731-790 [Internet]. 2010 . Available from:
De Sole A, Kac VG, Valeri D. Dirac reduction for Poisson vertex algebras. Communications in Mathematical Physics 331, nr. 3 (2014) 1155-1190 [Internet]. 2014 . Available from:
Caldiroli P, Musina R. The Dirichlet problem for H-systems with small boundary data: blowup phenomena and nonexistence results. Arch. Ration. Mech. Anal. 181 (2006) 1-42 [Internet]. 2006 . Available from:
Zagatti S. On the Dirichlet problem for vectorial Hamilton-Jacobi equations. SIAM J. Math. Anal. 29 (1998) 1481-1491 [Internet]. 1998 . Available from:
Anzellotti G, Buttazzo G, Dal Maso G. Dirichlet problems for demicoercive functionals. Nonlinear anal. 10(1986), no.6, 603-613 [Internet]. 1986 . Available from:
Zampieri M, Soranzo N, Altafini C. Discerning static and causal interactions in genome-wide reverse engineering problems. Bioinformatics 24 (2008) 1510-1515 [Internet]. 2008 . Available from:
Shah NVasant, Hess M, Rozza G. Discontinuous Galerkin Model Order Reduction of Geometrically Parametrized Stokes Equation. [Internet]. 2019 . Available from:
Chambolle A, Dal Maso G. Discrete approximation of the Mumford-Shah functional in dimension two. M2AN 33 (1999) 651-672 [Internet]. 1999 . Available from:
Saracco A, Saracco G. A discrete districting plan. Netw. Heterog. Media. 2019 ;14:771–788.
Noselli G, Tatone A, DeSimone A. Discrete one-dimensional crawlers on viscous substrates: achievable net displacements and their energy cost. [Internet]. 2014 . Available from:
Gallone M, Michelangeli A. Discrete spectra for critical Dirac-Coulomb Hamiltonians.; 2017. Available from:
Cicalese M, DeSimone A, Zeppieri CI. Discrete-to-continuum limits for strain-alignment-coupled systems: Magnetostrictive solids, ferroelectric crystals and nematic elastomers. Netw. Heterog. Media 4 (2009) 667-708 [Internet]. 2009 . Available from:
Bertola M, Korotkin DA. Discriminant circle bundles over local models of Strebel graphs and Boutroux curves. Teoret. Mat. Fiz. [Internet]. 2018 ;197:163–207. Available from:
Caravenna L, Daneri S. The disintegration of the Lebesgue measure on the faces of a convex function. J. Funct. Anal. 258 (2010) 3604-3661 [Internet]. 2010 . Available from:
Caravenna L. The Disintegration Theorem and Applications to Optimal Mass Transportation. [Internet]. 2009 . Available from:
Dipierro S, Palatucci G, Valdinoci E. Dislocation dynamics in crystals: a macroscopic theory in a fractional Laplace setting. SISSA; 2013. Available from:
Scala R, Van Goethem N. Dislocations at the continuum scale: functional setting and variational properties.; 2014. Available from:
Dubrovin B. Dispersion relations for non-linear waves and the Schottky problem. In: Important developments in soliton theory / A. S. Fokas, V. E. Zakharov (eds.) - Berlin : Springer-Verlag, 1993. - pages : 86-98. Important developments in soliton theory / A. S. Fokas, V. E. Zakharov (eds.) - Berlin : Springer-Verlag, 1993. - pages : 86-98. SISSA; 1993. Available from:


Sign in