MENU

You are here

Publications

Export 452 results:
Filters: First Letter Of Last Name is D  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Q
Dal Maso G, Francfort GA, Toader R. Quasistatic Crack Growth in Nonlinear Elasticity. Arch. Ration. Mech. Anal. 176 (2005) 165-225 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/2293
Dal Maso G, DeSimone A, Solombrino F. Quasistatic evolution for Cam-Clay plasticity: a weak formulation via viscoplastic regularization and time rescaling. Calculus of Variations and Partial Differential Equations 40 (2011) 125-181 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/3670
Dal Maso G, DeSimone A, Solombrino F. Quasistatic evolution for Cam-Clay plasticity: a weak formulation via viscoplastic regularization and time rescaling. Calculus of Variations and Partial Differential Equations 40 (2011) 125-181 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/3670
Dal Maso G, DeSimone A. Quasistatic evolution for Cam-Clay plasticity: examples of spatially homogeneous solutions. Math. Models Methods Appl. Sci. 19 (2009) 1643-1711 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/3395
Dal Maso G, DeSimone A. Quasistatic evolution for Cam-Clay plasticity: examples of spatially homogeneous solutions. Math. Models Methods Appl. Sci. 19 (2009) 1643-1711 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/3395
Dal Maso G, DeSimone A, Solombrino F. Quasistatic evolution for Cam-Clay plasticity: properties of the viscosity solution. Calculus of variations and partial differential equations 44 (2012) 495-541 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/3900
Dal Maso G, DeSimone A, Solombrino F. Quasistatic evolution for Cam-Clay plasticity: properties of the viscosity solution. Calculus of variations and partial differential equations 44 (2012) 495-541 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/3900
Dal Maso G, Solombrino F. Quasistatic evolution for Cam-Clay plasticity: the spatially homogeneous case. Netw. Heterog. Media 5 (2010) 97-132 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/3671
Dal Maso G, Francfort GA, Toader R. Quasi-static evolution in brittle fracture: the case of bounded solutions. Quad. Mat. Dip. Mat. Seconda Univ. Napoli 14 (2004) 245-266 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/2229
Dal Maso G, Scala R. Quasistatic Evolution in Perfect Plasticity as Limit of Dynamic Processes. Journal of Dynamics and Differential Equations [Internet]. 2014 ;26:915–954. Available from: https://doi.org/10.1007/s10884-014-9409-7
Davoli E, Mora MG. A quasistatic evolution model for perfectly plastic plates derived by Γ-convergence. Annales de l'Institut Henri Poincare (C) Non Linear Analysis [Internet]. 2013 ;30:615 - 660. Available from: http://www.sciencedirect.com/science/article/pii/S0294144912001035
Davoli E. Quasistatic evolution models for thin plates arising as low energy Γ-limits of finite plasticity. Mathematical Models and Methods in Applied Sciences [Internet]. 2014 ;24:2085-2153. Available from: https://doi.org/10.1142/S021820251450016X
Alberti G, DeSimone A. Quasistatic evolution of sessile drops and contact angle hysteresis. Arch. Rational Mech. Anal. 202 (2011) 295-348 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/4912
Dal Maso G, DeSimone A, Mora MG. Quasistatic evolution problems for linearly elastic-perfectly plastic materials. Arch. Ration. Mech. Anal. 180 (2006) 237-291 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2129
Dal Maso G, DeSimone A, Mora MG. Quasistatic evolution problems for linearly elastic-perfectly plastic materials. Arch. Ration. Mech. Anal. 180 (2006) 237-291 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2129
Dal Maso G, Demyanov A, DeSimone A. Quasistatic evolution problems for pressure-sensitive plastic materials. Milan J. Math. 75 (2007) 117-134 [Internet]. 2007 . Available from: http://hdl.handle.net/1963/1962
Dal Maso G, Demyanov A, DeSimone A. Quasistatic evolution problems for pressure-sensitive plastic materials. Milan J. Math. 75 (2007) 117-134 [Internet]. 2007 . Available from: http://hdl.handle.net/1963/1962
Dal Maso G, Demyanov A, DeSimone A. Quasistatic evolution problems for pressure-sensitive plastic materials. Milan J. Math. 75 (2007) 117-134 [Internet]. 2007 . Available from: http://hdl.handle.net/1963/1962
Dal Maso G, Sapio F. Quasistatic Limit of a Dynamic Viscoelastic Model with Memory. [Internet]. 2021 . Available from: https://doi.org/10.1007/s00032-021-00343-w
R
DeSimone A, Kohn RV, Müller S, Otto F. Recent analytical developments in micromagnetics. In: The science of hysteresis / eds. Giorgio Bertotti, Isaak D. Mayergoyz. - Amsterdam: Elsevier, 2006. Vol.2, 269-381. The science of hysteresis / eds. Giorgio Bertotti, Isaak D. Mayergoyz. - Amsterdam: Elsevier, 2006. Vol.2, 269-381. ; 2006. Available from: http://hdl.handle.net/1963/2230
De Masi L. Rectifiability of the free boundary for varifolds. Indiana Univ. Math. J. 2021 ;70:2603–2651.
Dubrovin B, Maltsev AYa A. Recurrent procedure for the determination of the free energy ε^2 expansion in the topological string theory. SISSA; 1999. Available from: http://hdl.handle.net/1963/6489
Devaud D, Rozza G. Reduced Basis Approximation for the Structural-Acoustic Design based on Energy Finite Element Analysis (RB-EFEA). In: CEMRACS 2013 - Modelling and simulation of complex systems: stochastic and deterministic approaches. Vol. 48. CEMRACS 2013 - Modelling and simulation of complex systems: stochastic and deterministic approaches. ; 2013. pp. 98-115.
Garotta F, Demo N, Tezzele M, Carraturo M, Reali A, Rozza G. Reduced order isogeometric analysis approach for pdes in parametrized domains. Lecture Notes in Computational Science and Engineering [Internet]. 2020 ;137:153-170. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089615035&doi=10.1007%2f978-3-030-48721-8_7&partnerID=40&md5=7b15836ae65fa28dcfe8733788d7730c
Star K, Sanderse B, Stabile G, Rozza G, Degroote J. Reduced order models for the incompressible Navier-Stokes equations on collocated grids using a `discretize-then-project' approach. International Journal for Numerical Methods in Fluids [Internet]. 2021 ;93:2694–2722. Available from: https://doi.org/10.1002/fld.4994

Pages

Sign in