You are here


Export 1603 results:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Bertola M. Frobenius manifold structure on orbit space of Jacobi groups. I. Differential Geom. Appl. 2000 ;13:19–41.
Bertola M, Tovbis A. Asymptotics of orthogonal polynomials with complex varying quartic weight: global structure, critical point behavior and the first Painlevé equation. Constr. Approx. [Internet]. 2015 ;41:529–587. Available from:
Bertola M, Ferrer APrats. Harish-Chandra integrals as nilpotent integrals. Int. Math. Res. Not. IMRN. 2008 :Art. ID rnn062, 15.
Bertola M, Korotkin DA. Discriminant circle bundles over local models of Strebel graphs and Boutroux curves. Teoret. Mat. Fiz. [Internet]. 2018 ;197:163–207. Available from:
Bertola M, Buckingham R, Lee SY, Pierce V. Spectra of random Hermitian matrices with a small-rank external source: the supercritical and subcritical regimes. J. Stat. Phys. [Internet]. 2013 ;153:654–697. Available from:
Bertola M. Bilinear semiclassical moment functionals and their integral representation. J. Approx. Theory. 2003 ;121:71–99.
Bertola M. CORRIGENDUM: The dependence on the monodromy data of the isomonodromic tau function. [Internet]. 2016 . Available from:
Bertola M, Cafasso M. The Transition between the Gap Probabilities from the Pearcey to the Airy Process–a Riemann-Hilbert Approach. International Mathematics Research Notices. 2011 ;doi: 10.1093/imrn/rnr066:1-50.
Bertola M. Jacobi groups, Jacobi forms and their applications. In: Isomonodromic deformations and applications in physics (Montréal, QC, 2000). Vol. 31. Isomonodromic deformations and applications in physics (Montréal, QC, 2000). Providence, RI: Amer. Math. Soc.; 2002. pp. 99–111.
Bertola M. Moment determinants as isomonodromic tau functions. Nonlinearity. 2009 ;22:29–50.
Bertola M, Gekhtman M, Szmigielski J. Cauchy-Laguerre two-matrix model and the Meijer-G random point field. Comm. Math. Phys. [Internet]. 2014 ;326:111–144. Available from:
Bertola M, Corbetta F, Moschella U. Massless scalar field in a two-dimensional de Sitter universe. In: Rigorous quantum field theory. Vol. 251. Rigorous quantum field theory. Basel: Birkhäuser; 2007. pp. 27–38.
Bertola M, Tovbis A. Maximal amplitudes of finite-gap solutions for the focusing Nonlinear Schrödinger Equation. Comm. Math. Phys. [Internet]. 2017 ;354:525–547. Available from:
Bertola M, Cafasso M. Fredholm determinants and pole-free solutions to the noncommutative Painlevé II equation. Comm. Math. Phys. [Internet]. 2012 ;309:793–833. Available from:
Bertola M, Eynard B, Harnad J. Partition functions for matrix models and isomonodromic tau functions. J. Phys. A. 2003 ;36:3067–3083.
Bertola M, Tovbis A. Universality in the profile of the semiclassical limit solutions to the focusing nonlinear Schrödinger equation at the first breaking curve. Int. Math. Res. Not. IMRN [Internet]. 2010 :2119–2167. Available from:
Bertola M, Bros J, Gorini V, Moschella U, Schaeffer R. Decomposing quantum fields on branes. Nuclear Phys. B. 2000 ;581:575–603.
Bertola M, Giavedoni P. A degeneration of two-phase solutions of the focusing nonlinear Schrödinger equation via Riemann-Hilbert problems. J. Math. Phys. [Internet]. 2015 ;56:061507, 17. Available from:
Bertola M, A. Ferrer P. Topological expansion for the Cauchy two-matrix model. J. Phys. A [Internet]. 2009 ;42:335201, 28. Available from:
Bhowmick J, D'Andrea F, Dabrowski L. Quantum Isometries of the finite noncommutative geometry of the Standard Model. Commun. Math. Phys. 307:101-131, 2011 [Internet]. 2011 . Available from:
Bhowmick J, D'Andrea F, Das BKrishna, Dabrowski L. Quantum gauge symmetries in noncommutative geometry. [Internet]. 2014 . Available from:
Bianchini S, Spinolo L. The boundary Riemann solver coming from the real vanishing viscosity approximation. Arch. Ration. Mech. Anal. 191 (2009) 1-96 [Internet]. 2009 . Available from:
Bianchini S. A Glimm type functional for a special Jin-Xin relaxation model. Ann. Inst. H. Poincare\\\' Anal. Non Lineaire 18 (2001), no. 1, 19-42 [Internet]. 2001 . Available from:
Bianchini S, Bonicatto P. A uniqueness result for the decomposition of vector fields in Rd. SISSA; 2017. Available from:
Bianchini S, Bonicatto P, Marconi E. Lagrangian representations for linear and nonlinear transport. Contemporary Mathematics. Fundamental Directions [Internet]. 2017 ;63:418–436. Available from:


Sign in