MENU

You are here

Publications

Export 1557 results:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
B
Bertola M, Eynard B. Mixed correlation functions of the two-matrix model. J. Phys. A. 2003 ;36:7733–7750.
Bertola M. The Malgrange form and Fredholm determinants. SIGMA Symmetry Integrability Geom. Methods Appl. [Internet]. 2017 ;13:Paper No. 046, 12. Available from: http://dx.doi.org/10.3842/SIGMA.2017.046
Bertola M. The dependence on the monodromy data of the isomonodromic tau function. Comm. Math. Phys. [Internet]. 2010 ;294:539–579. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1007/s00220-009-0961-7
Bertola M, Bros J, Moschella U, Schaeffer R. A general construction of conformal field theories from scalar anti-de Sitter quantum field theories. Nuclear Phys. B. 2000 ;587:619–644.
Bertola M, Marchal O. The partition function of the two-matrix model as an isomonodromic τ function. J. Math. Phys. [Internet]. 2009 ;50:013529, 17. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1063/1.3054865
Bertola M, Bothner T. Universality Conjecture and Results for a Model of Several Coupled Positive-Definite Matrices. Commun. Math. Phys. [Internet]. 2015 ;337:1077–1141. Available from: http://link.springer.com/article/10.1007/s00220-015-2327-7
Bertola M. Two-matrix model with semiclassical potentials and extended Whitham hierarchy. J. Phys. A. 2006 ;39:8823–8855.
Bertola M, Cafasso M, Rubtsov V. Noncommutative Painlevé Equations and Systems of Calogero Type. Comm. Math. Phys. 2018 .
Bertola M, Bothner T. Zeros of Large Degree Vorob'ev-Yablonski Polynomials via a Hankel Determinant Identity. International Mathematics Research Notices. 2014 ;rnu239.
Bertola M, Buckingham R, Lee SY, Pierce V. Spectra of random Hermitian matrices with a small-rank external source: the critical and near-critical regimes. J. Stat. Phys. [Internet]. 2012 ;146:475–518. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1007/s10955-011-0409-2
Bertola M, Lee SY. First colonization of a spectral outpost in random matrix theory. Constr. Approx. [Internet]. 2009 ;30:225–263. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1007/s00365-008-9026-y
Bertola M, Gorini V, Moschella U, Schaeffer R. Correspondence between Minkowski and de Sitter quantum field theory. Phys. Lett. B. 1999 ;462:249–253.
Bhowmick J, D'Andrea F, Dabrowski L. Quantum Isometries of the finite noncommutative geometry of the Standard Model. Commun. Math. Phys. 307:101-131, 2011 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/4906
Bhowmick J, D'Andrea F, Das BKrishna, Dabrowski L. Quantum gauge symmetries in noncommutative geometry. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34897
Bianchini S, Bonicatto P, Marconi E. A Lagrangian approach for scalar multi-d conservation laws.; 2017. Available from: http://preprints.sissa.it/handle/1963/35290
Bianchini S, Tonon D. SBV regularity for Hamilton-Jacobi equations with Hamiltonian depending on (t,x). Siam Journal on Mathematical Analysis [Internet]. 2012 ;44(3):2179-2203. Available from: http://hdl.handle.net/20.500.11767/14066
Bianchini S, Bressan A. Vanishing viscosity solutions of hyperbolic systems on manifolds. [Internet]. 1999 . Available from: http://hdl.handle.net/1963/1238
Bianchini S, Cavalletti F. The Monge Problem in Geodesic Spaces. In: Bressan A, Chen G-QG, Lewicka M, Wang D Nonlinear Conservation Laws and Applications. Nonlinear Conservation Laws and Applications. Boston, MA: Springer US; 2011. pp. 217–233.
Bianchini S. SBV regularity of genuinely nonlinear hyperbolic systems of conservation laws in one space dimension. Acta Mathematica Scientia, Volume 32, Issue 1, January 2012, Pages 380-388 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6535
Bianchini S, Modena S. Quadratic interaction functional for systems of conservation laws: a case study. Bulletin of the Institute of Mathematics of Academia Sinica (New Series) [Internet]. 2014 ;9:487-546. Available from: https://w3.math.sinica.edu.tw/bulletin_ns/20143/2014308.pdf
Bianchini S. A note on singular limits to hyperbolic systems of conservation laws. Commun. Pure Appl. Ana., 2003, 2, 51-64 [Internet]. 2003 . Available from: http://hdl.handle.net/1963/1542
Bianchini S, Marconi E. On the concentration of entropy for scalar conservation laws. Discrete & Continuous Dynamical Systems - S [Internet]. 2016 ;9:73. Available from: http://aimsciences.org//article/id/ce4eb91e-9553-4e8d-8c4c-868f07a315ae
Bianchini S, Yu L. Global Structure of Admissible BV Solutions to Piecewise Genuinely Nonlinear, Strictly Hyperbolic Conservation Laws in One Space Dimension. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34694
Bianchini S. On the Euler-Lagrange equation for a variational problem. Discrete Contin. Dynam. Systems A 17 (2007) 449-480 [Internet]. 2007 . Available from: http://hdl.handle.net/1963/1792
Bianchini S, De Lellis C, Robyr R. SBV regularity for Hamilton-Jacobi equations in R^n. Arch. Rational Mech. Anal. 200 (2011) 1003-1021 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/4911

Pages

Sign in