MENU

You are here

Publications

Export 258 results:
Filters: First Letter Of Last Name is D  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
D
Dubrovin B. Painlevé transcendents in two-dimensional topological field theory. In: The Painlevé property : one century later / Robert Conte ed. - New York : Springer-Verlag, 1999. - (CRM series in mathematical physics). - p. 287-412. The Painlevé property : one century later / Robert Conte ed. - New York : Springer-Verlag, 1999. - (CRM series in mathematical physics). - p. 287-412. Springer; 1999. Available from: http://hdl.handle.net/1963/3238
Dubrovin B, Si-Qi L, Youjin Z. On Hamiltonian perturbations of hyperbolic systems of conservation laws I: quasitriviality of bihamiltonian perturbations. Comm. Pure Appl. Math. 59 (2006) 559-615 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2535
Dubrovin B. WDVV equations and Frobenius manifolds. In: Encyclopedia of Mathematical Physics. Vol 1 A : A-C. Oxford: Elsevier, 2006, p. 438-447. Encyclopedia of Mathematical Physics. Vol 1 A : A-C. Oxford: Elsevier, 2006, p. 438-447. SISSA; 2006. Available from: http://hdl.handle.net/1963/6473
Dubrovin B. On Hamiltonian perturbations of hyperbolic systems of conservation laws, II: universality of critical behaviour.; 2006. Available from: http://hdl.handle.net/1963/1786
Dubrovin B. Hamiltonian partial differential equations and Frobenius manifolds. Russian Mathematical Surveys. Volume 63, Issue 6, 2008, Pages 999-1010 [Internet]. 2008 . Available from: http://hdl.handle.net/1963/6471
Dubrovin B, Maltsev AYa A. Recurrent procedure for the determination of the free energy ε^2 expansion in the topological string theory. SISSA; 1999. Available from: http://hdl.handle.net/1963/6489
Dubrovin B, Grava T, Klein C. Numerical Study of breakup in generalized Korteweg-de Vries and Kawahara equations. SIAM J. Appl. Math. 71 (2011) 983-1008 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/4951
d’Avenia P, Pomponio A, Vaira G. Infinitely many positive solutions for a Schrödinger–Poisson system. Nonlinear Analysis: Theory, Methods & Applications [Internet]. 2011 ;74:5705 - 5721. Available from: http://www.sciencedirect.com/science/article/pii/S0362546X11003518

Pages

Sign in