MENU

You are here

Publications

Export 12 results:
Filters: Author is Francesco Ballarin  [Clear All Filters]
Book Chapter
Ali S, Ballarin F, Rozza G. An Online Stabilization Method for Parametrized Viscous Flows. In: Reduction, Approximation, Machine Learning, Surrogates, Emulators and Simulators. Reduction, Approximation, Machine Learning, Surrogates, Emulators and Simulators. Springer, Cham; 2024. Available from: https://link.springer.com/chapter/10.1007/978-3-031-55060-7_1
Journal Article
Shah N, Girfoglio M, Quintela P, Rozza G, Lengomin A, Ballarin F, Barral P. Finite element based Model Order Reduction for parametrized one-way coupled steady state linear thermo-mechanical problems. Finite Elements in Analysis and Design [Internet]. 2022 ;212. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0168874X2200110X
Girfoglio M, Scandurra L, Ballarin F, Infantino G, Nicolò F, Montalto A, Rozza G, Scrofani R, Comisso M, Musumeci F. Non-intrusive data-driven ROM framework for hemodynamics problems. Acta Mechanica Sinica. 2021 ;37:1183–1191.
Prusak I, Nonino M, Torlo D, Ballarin F, Rozza G. An optimisation–based domain–decomposition reduced order model for the incompressible Navier-Stokes equations. [Internet]. 2023 ;151:172 - 189. Available from: https://www.sciencedirect.com/science/article/pii/S0898122123004248
Strazzullo M, Ballarin F, Rozza G. POD–Galerkin Model Order Reduction for Parametrized Time Dependent Linear Quadratic Optimal Control Problems in Saddle Point Formulation. Journal of Scientific Computing. 2020 ;83.
Ballarin F, Rozza G, Strazzullo M. Space-time POD-Galerkin approach for parametric flow control. Handbook of Numerical Analysis. 2022 ;23.
Ali S, Ballarin F, Rozza G. Stabilized reduced basis methods for parametrized steady Stokes and Navier–Stokes equations. Computers & Mathematics with Applications [Internet]. 2020 ;80(11):2399-2416. Available from: https://www.sciencedirect.com/science/article/pii/S0898122120301231
Carere G, Strazzullo M, Ballarin F, Rozza G, Stevenson R. A weighted POD-reduction approach for parametrized PDE-constrained optimal control problems with random inputs and applications to environmental sciences. Computers and Mathematics with Applications [Internet]. 2021 ;102:261-276. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85117948561&doi=10.1016%2fj.camwa.2021.10.020&partnerID=40&md5=cb57d59a6975a35315b2cf5d0e3a6001

Sign in